						ST PARTMENT DIVISION OI		TURAL RE				AMEND	FOR					
		А	PPLICATION	FOR	PERMIT TO	DRILL					1. WELL NAME and NU	JMBER Ilred Trust	2-31A1E					
2. TYPE OI	F WORK	DRILL NEW WELL	REENT	FR P&	A WELL	DEEPEN \	WELL ()			3. FIELD OR WILDCAT	Γ BLUEB	ELL					
4. TYPE OF	WELL				ed Methane V						5. UNIT or COMMUNIT			NT NAM	IE			
6. NAME O	F OPERATOR				COMPANY, L.						7. OPERATOR PHONE	713 997	-5039					
8. ADDRES	S OF OPERAT	OR	1001 Louisia								9. OPERATOR E-MAIL	-		om				
	AL LEASE NUM , INDIAN, OR S		1001 Louisia	114, 110	11. MINERA	L OWNERS	400			_	12. SURFACE OWNERS	SHIP						
fee fee rounding federal india 13. NAME OF SURFACE OWNER (if box 12 = 'fee')								STATE	FEE (III)	14. SURFACE OWNER	DIAN ()	STATE		EE ((10))			
	13. NAME OF SURFACE OWNER (If BOX 12 = 166') Ardith B. Allred, Trustee of the Ardith B Allred Trust 15. ADDRESS OF SURFACE OWNER (if box 12 = 'fee')											435-353	-4691					
15. ADDRE	SS OF SURFA	CE OWNER (II DO	RR 2 Box 266	67, Ro	1							K E-MAIL ((II DOX 12 :	= Tee)				
17. INDIAN ALLOTTEE OR TRIBE NAME (if box 12 = 'INDIAN')						FORMATION (Submit Co	NS)	19. SLANT VERTICAL DIF	RECTIONAL	но	ORIZONT	AL 🔵			
20. LOCA	TION OF WELL	-		FC	OOTAGES		QTI	R-QTR	SECTIO	N	TOWNSHIP	RA	NGE	МЕ	RIDIAN			
LOCATIO	N AT SURFACE		1	569 FI	NL 1113 FEI	-	S	SENE	31		1.0 S	1.0) E	E U				
Top of Uppermost Producing Zone 1569					NL 1113 FEI	_	S	ENÉ	31		1.0 S	1.0	Ε		U			
At Total	Depth		1	569 FI	NL 1113 FEI	L	S	SENE	31		1.0 S	1.0) E		U			
21. COUN	TY	UINTAH			22. DISTAN	CE TO NEAF	REST LE		(Feet)		23. NUMBER OF ACRE	ES IN DRIL 640		Г				
						CE TO NEAF or Drilling o		leted)	ME POOL		26. PROPOSED DEPTI MD:		TVD: 1370	00				
27. ELEVA	TION - GROUN	ID LEVEL		1	28. BOND N	UMBER					29. SOURCE OF DRILL WATER RIGHTS APPR			PLICABI	LE			
		5327		1			400JU				Roos	Roosevelt City / Ballard City						
String	Hole Size	Casing Size	Length		Hole Weight	e, Casing, Grade &			formation		Cement							
COND	20	13.375	0 - 100		54.5		LT&C	u 1110	8.8		Class G 1241			1.15	15.8			
SURF	12.25	9.625	0 - 550	0	40.0	N-80	LT&C		9.5		35/65 Poz		809	3.16	11.0			
											emium Lite High Str		191	1.33	14.2			
I1	8.75	7	0 - 963	0	29.0	P-110	0 LT&C		11.0		emium Lite High Str		258					
L1	6.125	4.5	9430 - 13	700	13.5	P-110	0 LT&C	-	15.0	Pr	emium Lite High Str 50/50 Poz	ength	91 386	1.91	12.5			
						ΑΊ	TTACHI	MENTS							<u> </u>			
	VEF	RIFY THE FOLLO	OWING ARE	ATTA	CHED IN AC	CCORDAN	CE WIT	H THE U	TAH OIL AND	GAS	CONSERVATION G	ENERAL	RULES					
₩	ELL PLAT OR M	AP PREPARED BY	LICENSED SU	RVEYO	R OR ENGIN	EER		₽ Co	OMPLETE DRILL	ING P	_AN							
I ✓ AFI	FIDAVIT OF STA	ATUS OF SURFACE	OWNER AGRE	EMEN	IT (IF FEE SU	RFACE)		FO	RM 5. IF OPERA	ATOR I	S OTHER THAN THE LE	EASE OWN	IER					
DIR	ECTIONAL SU	RVEY PLAN (IF DI	RECTIONALLY	OR HO	ORIZONTALL	Y DRILLED)	,	то	POGRAPHICAL	MAP								
NAME Ma	ria S. Gomez			TITL	E Principal R	egulatory Ar	nalyst			PH	ONE 713 997-5038							
SIGNATU	RE			DAT	E 07/22/201	2				ЕМ	AIL maria.gomez@epe	nergy.com						
	BER ASSIGNED 047530020			APPI	ROVAL				F) Job	Rejll							
									P	ermit	Manager			### ATE				

Allred Trust 2-31A1E Sec. 31, T1S, R1E UINTAH COUNTY, UT

EP ENERGY E&P COMPANY, L.P.

DRILLING PROGRAM

1. <u>Estimated Tops of Important Geologic Markers</u>

<u>Formation</u>	<u>Depth</u>	
Green River (GRRV)	5,428'	
Green River (GRTN1)	6,803'	
Mahogany Bench	7,433'	
L. Green River	8,593'	
Wasatch	9,528'	
T.D. (Permit)	13,700'	

2. Estimated Depths of Anticipated Water, Oil, Gas or Mineral Formations:

<u>Substance</u>	<u>Formation</u>	<u>Depth</u>
_	Green River (GRRV)	5,428'
	Green River (GRTN1)	6,803'
	Mahogany Bench	7,433'
Oil	L. Green River	8,593'
Oil	Wasatch	9,528'

3. Pressure Control Equipment: (Schematic Attached)

A 4.5" by 20.0" rotating head on structural pipe from surface to 1,000'. A 4.5" by 13 3/8" Smith Rotating Head and 5M Annular from 1,000' to 5,500' on Conductor. A 5M BOP stack, 5M kill lines and choke manifold used from 5,500' to 9,630'. A 10M BOE w/rotating head, 5M annular, blind rams & mud cross from 9,630' to TD. The BOPE and related equipment will meet the requirements of the 5M and 10M system.

OPERATORS MINIMUM SPECIFICATIONS FOR BOPE:

The surface casing will be equipped with a flanged casing head of 5M psi working pressure. An 11" 5M x 11" 10M spool, 11" x 10M psi BOP and 5M psi Annular will be nippled up on the surface casing and tested to 250 psi low test / 3,000 psi high test for 10 minutes each prior to drilling out. The surface casing will be tested to 1,000 psi. for 30 mins. Intermediate casing will be tested to the greater of 1500 psi or 0.22 psi/ft. The choke manifold equipment, upper Kelly cock, floor safety valves will be tested to 5M psi. The annular preventer will be tested to 250 psi low lest and 4,000 psi high test. The 10M BOP will be installed

with 3 $\frac{1}{2}$ " pipe rams, blind rams, mud cross and rotating head from intermediate shoe to TD. The BOPE will be hydraulically operated.

In addition, the BOP equipment will be tested after running intermediate casing, after any repairs to the equipment and at least once every 30 days. Pipe and blind rams will be activated on each trip, annular preventer will be activated weekly and weekly BOP drills will be held with each crew.

Statement on Accumulator System and Location of Hydraulic Controls:

Precision Rig # 406 is expected to be used to drill the proposed well. Operations will commence after approval of this application. Manual and/or hydraulic controls will be in compliance with 5M psi systems.

Auxiliary Equipment:

- A) Pason Gas Detector 1,000' to TD
- B) Mud logger with gas monitor 5,500' to TD
- C) Choke manifold with one manual and one hydraulic operated choke
- D) Full opening floor valve with drill pipe thread
- E) Upper and lower Kelly cock
- F) Shaker, centrifuge and de-sander.

4. Proposed Casing & Cementing Program:

Please refer to the attached Wellbore Diagram.

All casing will meet or exceed the following design safety factors:

- Burst = 1.00
- Collapse = 1.125
- Tension = 1.2 (including 100k# overpull)

Cement design calculations will be based on

Cement design calculations will be based on gauge hole volumes plus excess (see planned excess below). Actual volumes pumped will be the planned volume on the surface and intermediate sections and caliper plus excess on the production section.

Surface Casing: 75% Excess on Lead and 50% Excess on Tail Intermediate Casing: 10% Excess on Lead and 10% Excess on Tail

Production: 25% Excess

5. **Drilling Fluids Program:**

Proposed Mud Program:

Interval	Type	Mud Weight
Surface	WBM	8.8 - 9.5
Intermediate	WBM	9.5 – 11.0
Production	WBM	11.0 – 15.0

Anticipated mud weights are based on actual offset well bottom-hole pressure data. Mud weights utilized may be somewhat higher to allow for trip margin and to provide hole stability for running logs and casing.

Visual mud monitoring equipment will be utilized.

6. **Evaluation Program**:

Logs:

Mud Log: 5,500 - TD.

Open Hole Logs: Gamma Ray, Neutron-Density, Resistivity, Sonic, from base of

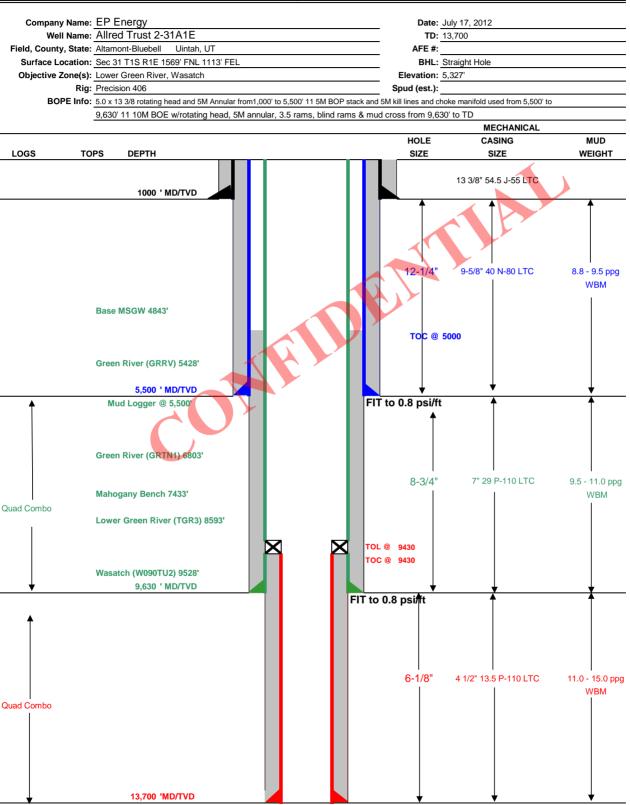
surface casing to TD.

7. Abnormal Conditions:

Maximum anticipated bottomhole pressure calculated at 13,700' TD equals approximately 10,686 psi. This is calculated based on a 0.78 psi/foot gradient (15 ppg mud density at TD).

Maximum anticipated surface pressure equals approximately 7,672 psi (bottomhole pressure minus the pressure of a partially evacuated hole calculated at 0.22 psi/ft).

Maximum anticipated surface pressure based on frac gradient at 7" casing shoe is 0.8 psi/ft at 9,600' = 7,704 psi


BOPE and casing design will be based on the lesser of the two MASPs which is 7,672 psi.

8. OPERATOR REQUESTS THAT THE PROPOSED WELL BE PLACED ON CONFIDENTIAL STATUS.

Page 1/2

Drilling Schematic

Page 2/2

DRILLING PROGRAM

CASING PROGRAM	SIZE	INTE	RVAL	WT.	GR.	CPLG.	BURST	COLLAPSE	TENSION
CONDUCTOR	13 3/8"	0	1000	54.5	J-55	LTC	2,730	1,140	1,399
SURFACE	9-5/8"	0	5500	40.00	N-80	LTC	3,090	5,750	820
INTERMEDIATE	7"	0	9630	29.00	P-110	LTC	11,220	8,530	797
PRODUCTION LINER	4 1/2"	9430	13700	13.50	P-110	LTC	12,410	10,680	338

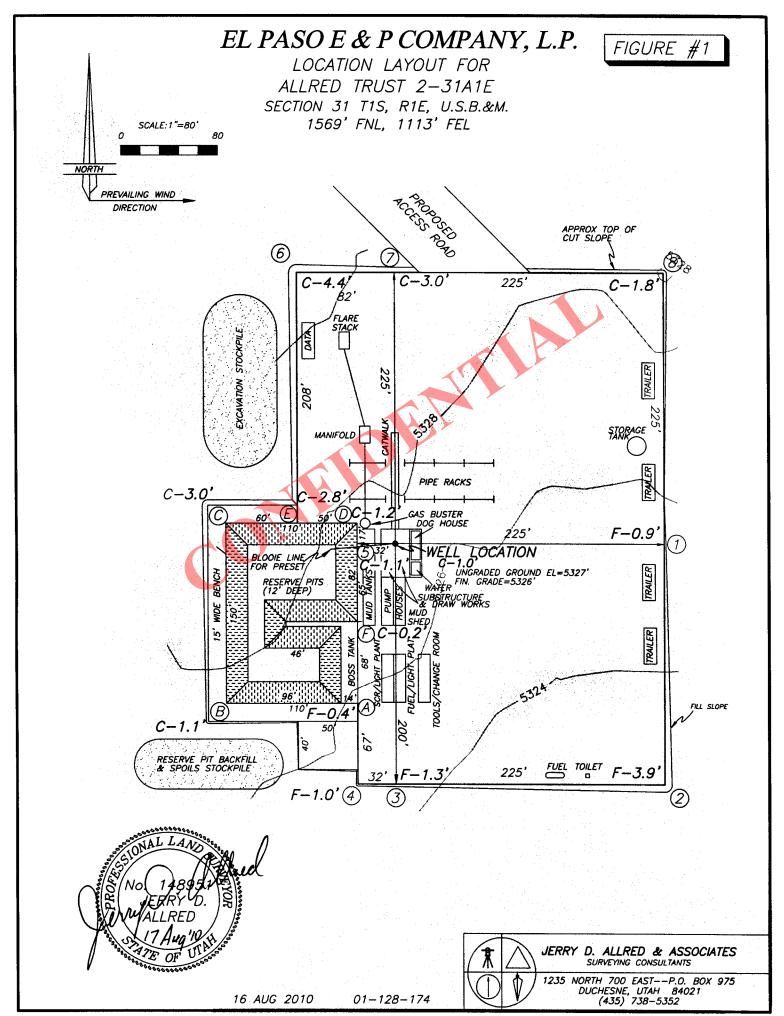
CEMENT PROGRA	M	FT. OF FILL	DESCRIPTION	SACKS	EXCESS	WEIGHT	YIELD
CONDUCTOR		1000	Class G + 3% CACL2	1241	100%	15.8 ppg	1.15
SURFACE	Lead	5,000	Boral Craig POZ 35%, Mountain G 65%, Bentonite Wyoming 8%, Silicate 5 lbm/sk, Pol-E Flake 0.125 lbm/sk, Kwik Seal 0.25 lb/sk	809	75%	11.0 ppg	3.16
	Tail	500	Halco-light premium+3 lb/sk Silicate+0.3% Econolite+1% Salt+0.25 lbm/sk Kol- Seal+0.24 lb/sk Kwik Seal+ HR-5	191	50%	14.2 ppg	1.33
INTERMEDIATE	1 ead 3 630		Hallco-Light-Premium+4% Bentonite+0.4% Econolite+0.2% Halad322+3 lb/sk Silicalite Compacted+0.8% HR-5+ 0.125 lb/sk Poly- E-Flake	258	10%	12.0 ppg	2.31
	Tail	1,000	Hallco-Light-Puemium+0.2% Econolite+ 0.3% Versaset+0.2% Halad322+0.8% HR- 5+ 0.3% SuperCBL+ 0.125 lb/sk Poly-E- Flake	91	10%	12.5 ppg	1.91
PRODUCTION LINER		4,270	Halco - 50/50 Poz Premium Cement+20% SSA-1+0.3% Super CBL+ 0.3% Halad- 344+0.3% Halad-413+ 0.2% SCR-100+ 0.125 lb/sk Poly-E-Flake + 3 lb/sk Silicat	386	25%	16.40	1.31

FLOAT EQUIPMENT & CE	FLOAT EQUIPMENT & CENTRALIZERS									
CONDUCTOR	PDC drillable guide shoe, 1 joint, PDC drillable float collar. Thread lock all float equipment. Install bow									
OONDOOTOR	spring centralizers on the bottom 3 joints of casing.									
SURFACE	PDC drillable guide shoe, 1 joint casing, PDC drillable float collar & Stage collar. Thread lock all float									
SURFACE	equipment. Install bow spring centralizers on the bottom 3 joints of casing & every 3rd joint thereafter.									
INTERMEDIATE	PDC drillable 10M,P-110 float shoe, 1 joint, PDC drillable 10M, P-110 float collar. Thread lock all float									
INTERMEDIATE	equipment. Maker joint at 8,000'.									
LINER	Float shoe, 1 joint, float collar. Thread lock all FE. Maker joints every 1000'.									

PROJECT ENGINEER(S):	Joe Cawthorn	713-997-5929
MANAGER:	Tommy Gaydos	
MANAGER:	Tommy Gaydos	

EL PASO E&P COMPANY, L.P.

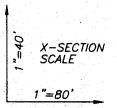
ALLRED TRUST 2-31A1E SECTION 31, T1S, R1E, U.S.B.&M.


PROCEED EAST ON US HIGHWAY 40 FROM THE INTERSECTION OF MAIN STREET AND 200 NORTH STREET, ROOSEVELT, UTAH APPROXIMATELY 5 MILES TO AN INTERSECTION:

TURN LEFT AND PROCEED NORTH ON PAVED HIGHWAY FROM THE INTERSECTION OF WHITEROCKS HIGHWAY WITH U.S. HIGHWAY 40 APPROXIMATELY 5.05 MILES TO AN INTERSECTION:

TURN LEFT AND TRAVEL WEST ON PAVED COUNTY ROAD APPROXIMATELY 0.25 MILES TO THE BEGINNING OF THE ACCESS ROAD;

TURN LEFT AND FOLLOW ROAD FLAGS SOUTH APPROXIMATELY 0.26 MILES TO THE PROPOSED LOCATION;


TOTAL DISTANCE FROM THE INTERSECTION OF THE WHITEROCKS HIGHWAY AND U.S. HIGHWAY 40 TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 5.56 MILES.

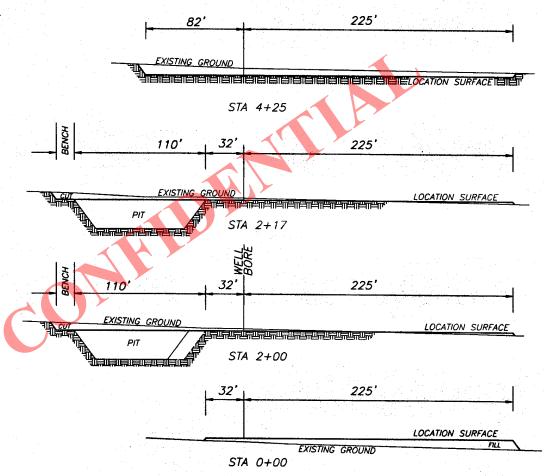

EL PASO E & P COMPANY, L.P.

FIGURE #2

LOCATION LAYOUT FOR ALLRED TRUST 2-31A1E SECTION 31 T1S, R1E, U.S.B.&M. 1569' FNL, 1113' FEL

NOTE: ALL CUT/FILL SLOPES ARE 1½:1 UNLESS OTHERWISE NOTED

APPROXIMATE YARDAGES

TOTAL CUT (INCLUDING PIT) = 10,756 CU. YDS.

PIT CUT = 4572 CU. YDS.

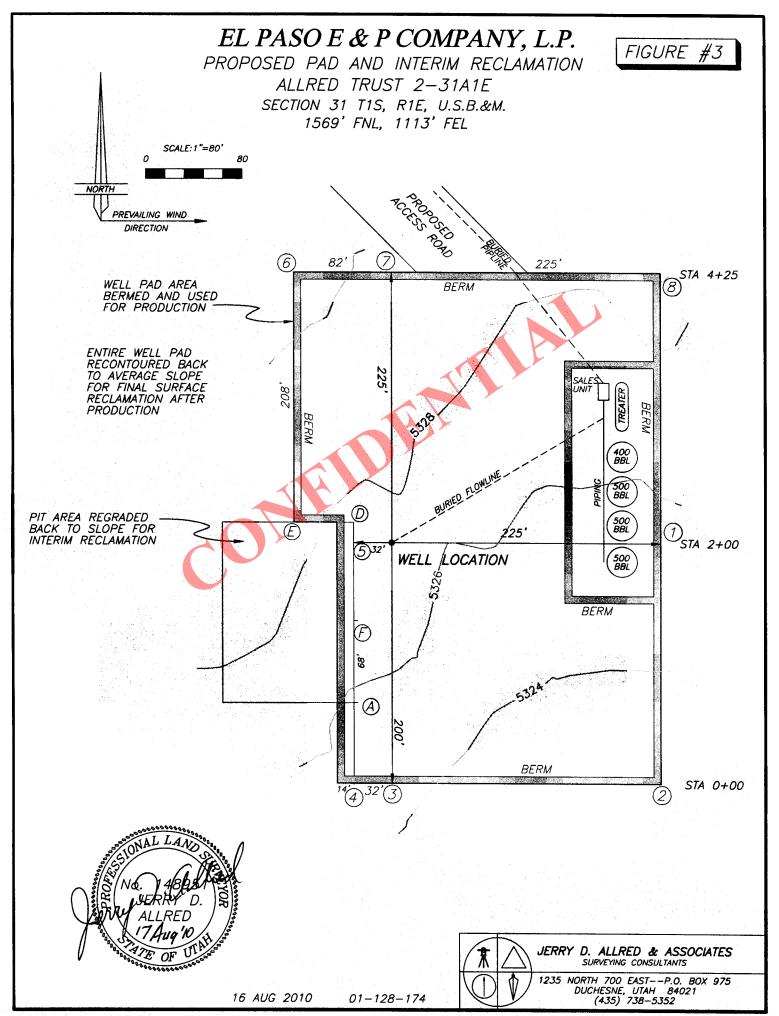
TOPSOIL STRIPPING: (6") = 2754 CU. YDS.

PENANTING LOCATION CUT.

REMAINING LOCATION CUT = 3,430 CU. YDS

TOTAL FILL = 3433 CU. YDS.

LOCATION SURFACE GRAVEL=1504 CU. YDS. (4" DEEP)


ACCESS ROAD GRAVEL=378 CU. YDS.

JERRY D. ALLRED & ASSOCIATES SURVEYING CONSULTANTS

1235 NORTH 700 EAST——P.O. BOX 975 DUCHESNE, UTAH 84021 (435) 738—5352

LOCATION USE AREA AND ACCESS ROAD, POWERLINE, AND PIPELINE CORRIDOR RIGHT-OF-WAY SURVEY FOR

ELPASO E&P COMPANY. L.P. ALLRED TRUST 2-31A1E

SECTION 31, T1S, R1E, U.S.B.&M. UINTAH COUNTY, UTAH

USE AREA BOUNDARY DESCRIPTION

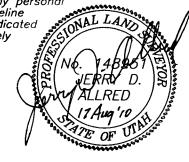
Commencing at the East Quarter Corner of Section 31, Township 1 South, Range 1 East of the Uintah Special Base and Meridian; Thence North 45°23'16" West 1204.72 feet to the TRUE POINT OF BEGINNING:

Thence North 90'00'00" West 447.36 feet to the West line of the SE1/4 of the NE1/4 of said

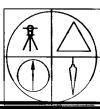
Thence North 00°42'35" East 475.00 feet to the Northwest Corner of said aliquot part;
Thence South 89°57'29" East 441.97 feet along the North line of said aliquot part;
Thence South 00°03'34" West 474.64 feet to the TRUE POINT OF BEGINNING, containing 4.85 acres.

ACCESS ROAD, PIPELINE, AND POWER LINE CORRIDOR RIGHT-OF-WAY DESCRIPTION

A 66 feet wide access road, pipeline, and power line right-of-way corridor over portions of Section 31, Township 1 South, Range 1 East of the Uintah Special Base and Meridian, the centerline of said right-of-way being further described as follows: Commencing at the Northeast Corner of said Section; Thence South 38'34'04" West 1687.35 feet to the TRUE POINT OF BEGINNING, said point being on the South line of the NE1/4 of the NE1/4 of said Section and on the North line of the Elpaso E&P Co. Allred Trust 2-31A1E well location use area boundary;
Thence North 48'06'33" West 303.82 feet;
Thence North 00'22'24" East 1085.06 feet to the South right-of-way line of the County Road. Said right-of-way being 1388.87 feet in length with the sidelines being shortened or elongated to intersect said use area boundary and said South right-of-way lines.


SURVEYOR'S CERTIFICATE

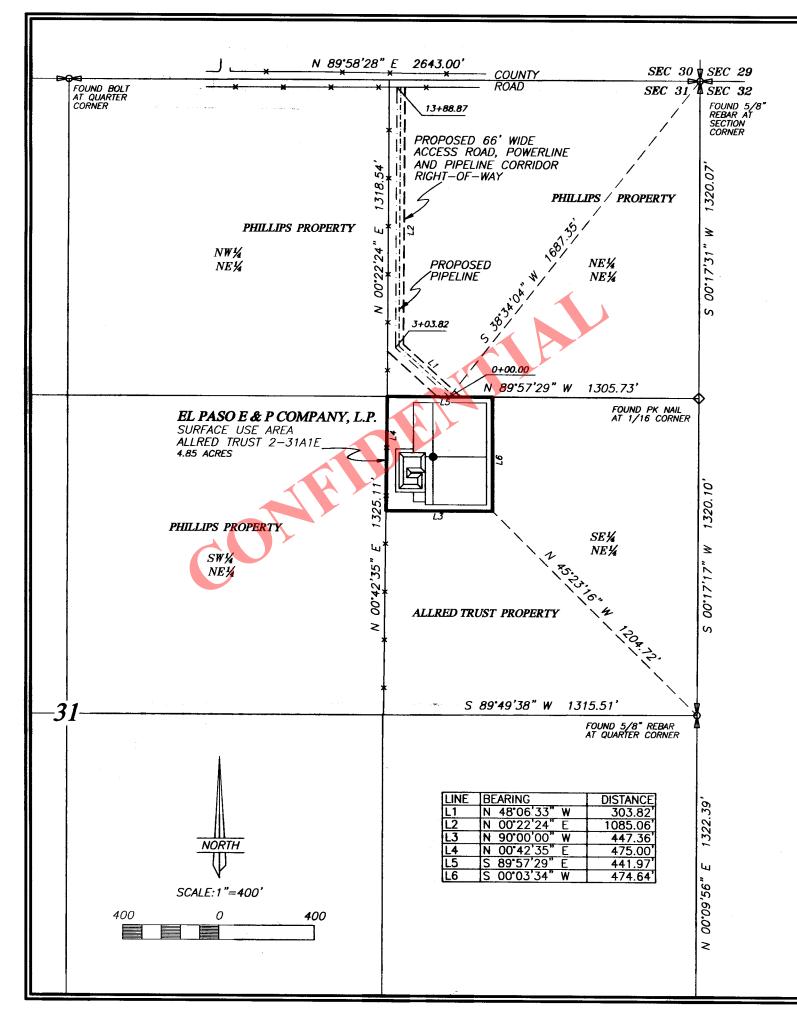
This is to certify that this plat was prepared from the field notes and electronic data collector files of an actual survey made by me, or under my personal supervision, of the use area and access road, powerline, and pipeline corridor right—of—way shown hereon, and that the monuments indicated were found or set during said survey, and that this plat accurately represents said survey to the best of my knowledge.


THIS SURVEY WAS PERFORMED USING GLOBAL POSITIONING SYSTEM PROCEDURES AND EQUIPMENT

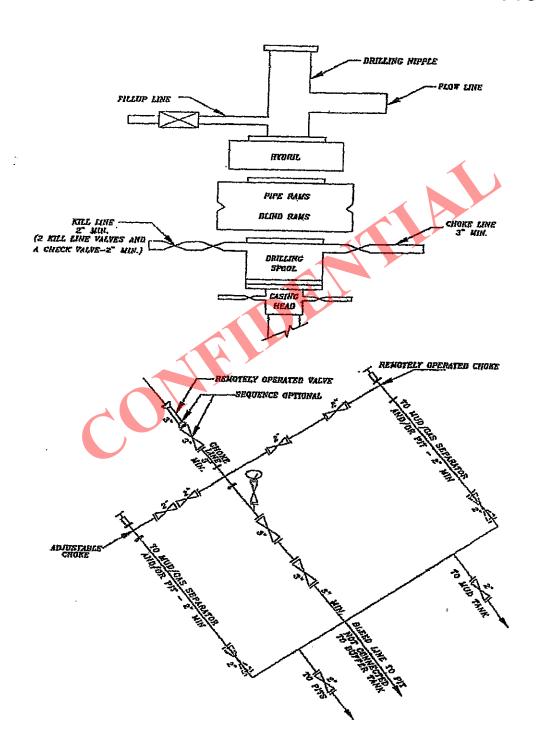
THE BASIS OF BEARINGS IS GEODETIC NORTH DERIVED FROM G.P.S. OBSERVATIONS AT THE SECTION CORNER LOCATED AT LAT. 40°22'29.30061"N AND LONG. 109°54'58.86832"W USING THE UTAH STATE G.P.S. VIRTUAL REFERENCE STATION CONTROL NETWORK MAINTAINED AND OPERATED BY THE AUTOMATED GEOGRAPHIC REFERENCE CENTER

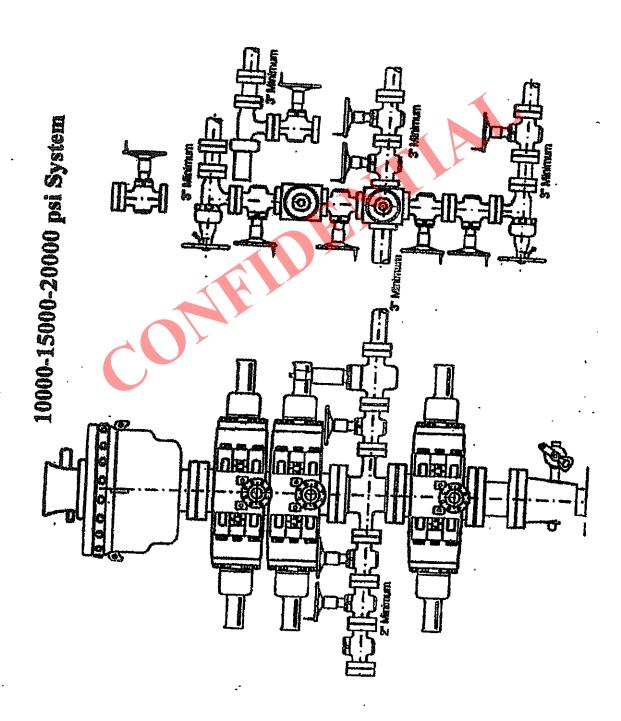
BASIS OF ELEVATIONS: NAVD 88 DATUM USING THE UTAH REFERENCE NETWORK CONTROL SYSTEM

Jerry D. Allred, Professional Land Surveyor, Certificate 148951 (Utah)



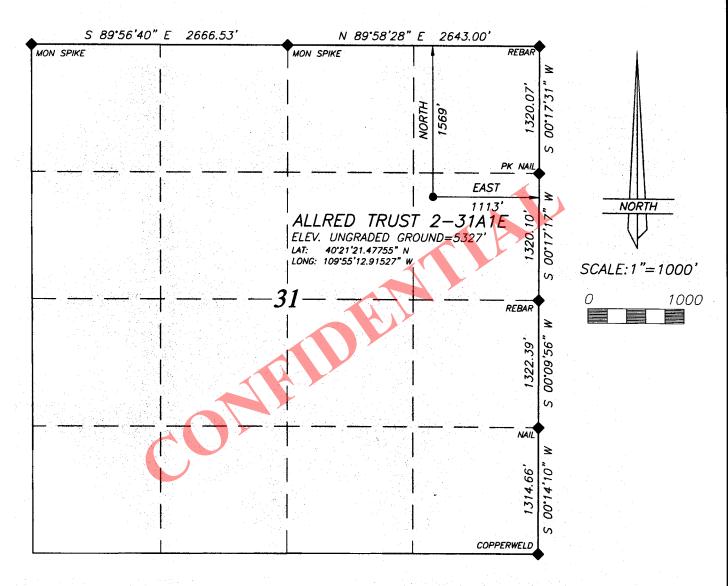
JERRY D. ALLRED AND ASSOCIATES


SURVEYING CONSULTANTS


1235 NORTH 700 EAST--P.O. BOX 975 DUCHESNE, UTAH 84021 (435) 738–5352

17 AUG 2010 01 - 128 - 174

5M BOP STACK and CHOKE MANIFOLD SYSTEM



EL PASO E & P COMPANY, L.P.

WELL LOCATION

ALLRED TRUST 2-31A1E

LOCATED IN THE SE% OF THE NE% OF SECTION 31, T1S, R1E, U.S.B.&M. UINTAH COUNTY, UTAH

LEGEND AND NOTES

CORNER MONUMENTS FOUND AND USED BY THIS SURVEY

THE GENERAL LAND OFFICE (G.L.O.) PLAT WAS USED FOR REFERENCE AND CALCULATIONS AS WAS THE U.S.G.S. MAP

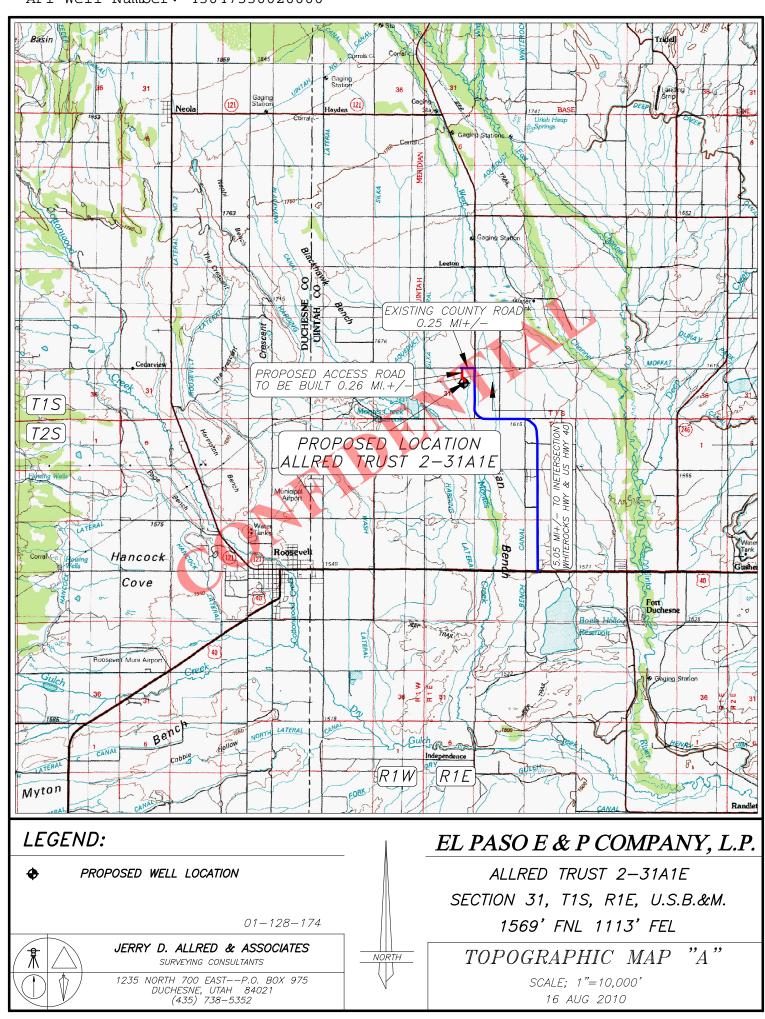
THIS SURVEY WAS PERFORMED USING GLOBAL POSITIONING SYSTEM PROCEDURES AND EQUIPMENT

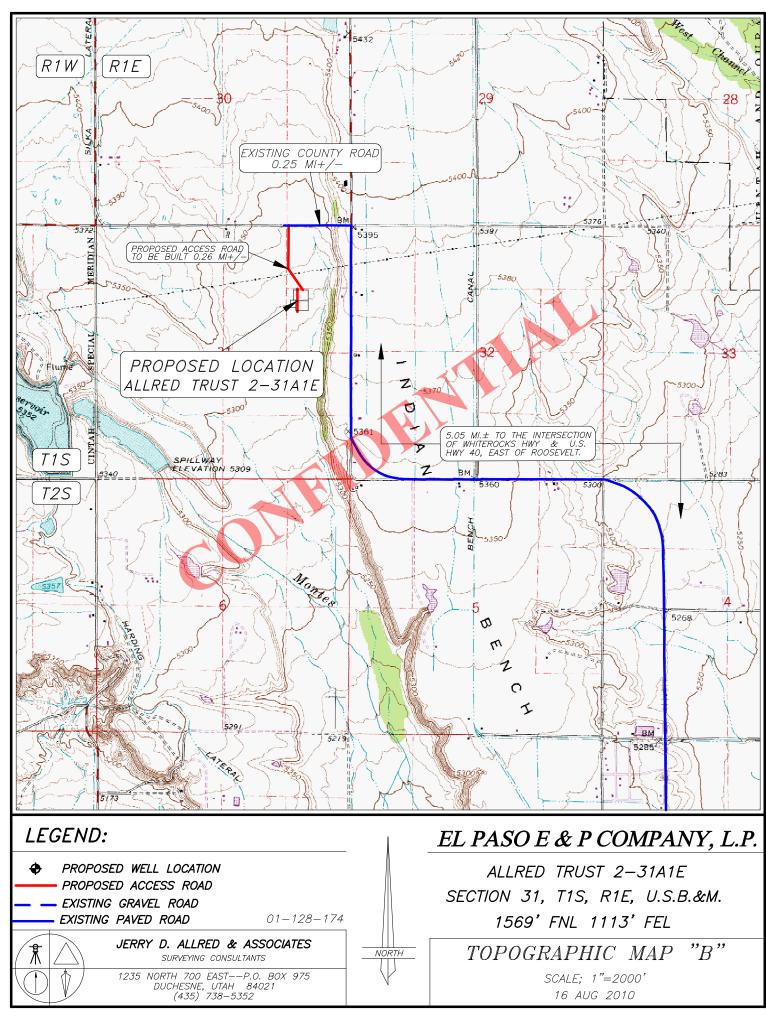
THE BASIS OF BEARINGS IS GEODETIC NORTH DERIVED FROM G.P.S. OBSERVATIONS AT THE SECTION CORNER LOCATED AT LAT. 40°22'29.30061"N AND LONG. 109°54'58.86832"W USING THE UTAH STATE G.P.S. VIRTUAL REFERENCE STATION CONTROL NETWORK MAINTAINED AND OPERATED BY THE AUTOMATED GEOGRAPHIC REFERENCE CENTER

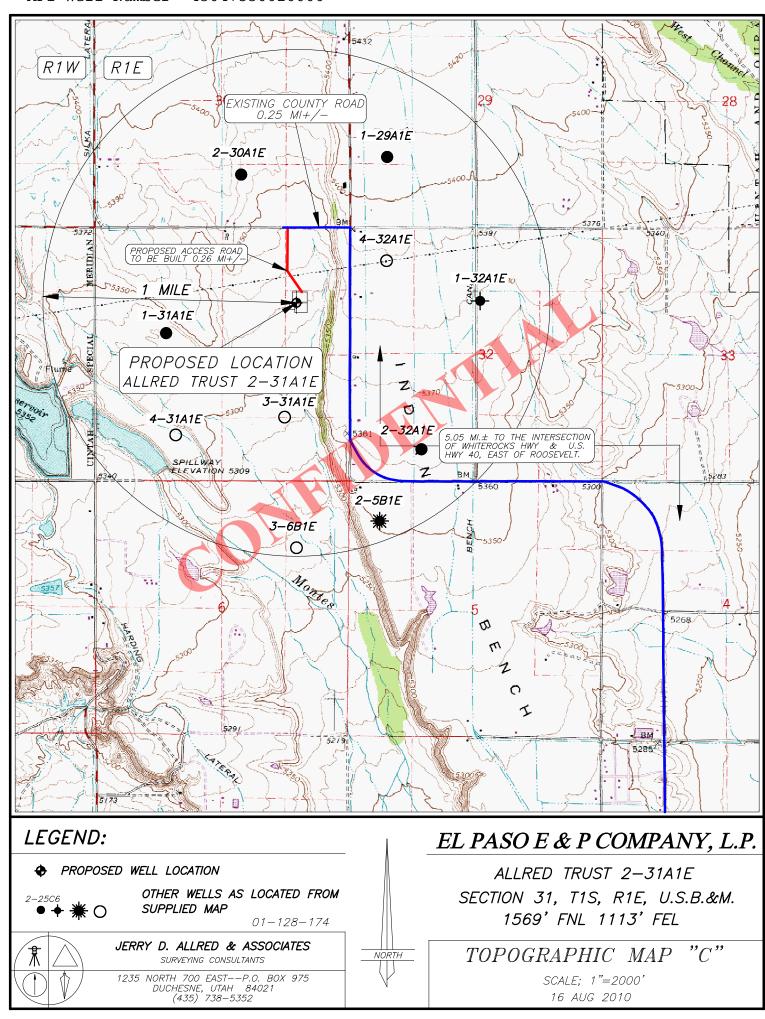
BASIS OF ELEVATIONS: NAVD 88 DATUM USING THE UTAH REFERENCE NETWORK CONTROL SYSTEM

SURVEYOR'S CERTIFICATE

I HEREBY CERTIFY THAT THIS PLAT WAS PREPARED FROM THE FIELD NOTES AND ELECTRONIC DATA COLLECTOR FILES OF AN ACTUAL SURVEY PERFORMED BY ME, OR UNDER MY PERSONAL SUPERVISION, DURING WHICH THE SHOWN MONUMENTS WERE FOUND OR REESTABLISHED.


JERRY D. ALLRED, REGISTERED LAND SURVEYOR, CERTIFICATE NO. 148951 (UTAH)




JERRY D. ALLRED & ASSOCIATES
SURVEYING CONSULTANTS

1235 NORTH 700 EAST——P.O. BOX 975 DUCHESNE, UTAH 84021 (435) 738—5352

10 AUG 2010 01-128-174

AFFIDAVIT OF FACTS

STATE OF UTAH

8

COUNTY OF DUCHESNE

8

Re: Damage Settlement & Release (DS&R) and Right-of-Way (ROW)
El Paso E&P Company, L.P., Operator
Allred Trust 2-31A1E, Oil & Gas Well
T1S-R1E, USM, Sec. 31: SE/4NE/4
Uintah County, Utah

WHEREAS, the undersigned, Byron Moos (affiant), who's mailing address is P.O. Box 3 Duchesne, UT 84021, being first duly sworn on oath, depose and say:

- 1. I am over the age of 21 and am an Independent Oil and Gas Landman, on contract to Transcontinent Oil Company, as agent for El Paso E&P Company, L.P., 1001 Louisiana Street, Suite 2400, Houston, Texas 77002 ("El Paso").
- 2. El Paso is the Operator and owner of the mineral estate under oil and gas leases of the proposed Allred Trust 2-31A1E (the "well") to be located in the SE/4NE/4 of Section 31, Township 1 South, Range 1 East, USM, Uintah County, Utah (the "Drillsite Location") at a surveyed location of 1,113 feet from the East line and 1,569 feet from the North line of the said Section 31, where the Drillsite Location of 4.85 acres of land, more or less, is located. The location is on a tract of land known as Uintah County (Tax Roll) Serial # 13:031:0007 Uintah County, Utah ("Property").
- 3. While the minerals under the Property are owned by a number of individual fee mineral owners, the surface estate is owned by:

Ardith B. Allred, Trustee of the Ardith B Allred Trust dated March 24, 2005 RR 2 Box 2667
Roosevelt, Utah 84066
Phone 435-353-4691

- 4. On June 24, 2010 Cameron Moos (Landman for Land Professionals, Inc. on contract to El Paso E&P Company, Inc.) contacted Ardith B. Allred by telephone. Mrs. Allred stated that her son, Clark Allred was handling her affairs. Mr. Moos than attempted to contact Clark Allred by telephone but was connected to Mr. Allred's voice mail. Mr. Moos left a message for Mr. Allred asking him to return his call.
- 5. On June 29, 2010 Cameron Moos (Landman) spoke with Mr. Clark Allred (son of Ardith Allred) about the proposed Allred Trust 2-31A1E well and that he was sending out a letter explaining El Paso's desire to survey the Property to determine the best location on the Property for the proposed well site. Mr. Allred said to go ahead and send the letter but he wasn't sure about having a well site placed on his mother's property. The survey letter was sent to Mr. Allred this same day.
- 6. On July 7, 2010 Cameron Moos (Landman) contacted Mr. Clark Allred by telephone. Mr. Allred indicated that he did not want the survey to take place. He instead asked to meet with representatives from El Paso at the Property to look at the land. Mr. Moos contacted Wayne Garner (El Paso Construction Supervisor) to inquire if he would be available to meet with Mr. Allred at the Property to discuss the proposed well. Mr. Garner indicated that he would be available the following day to meet with Mr. Allred. Mr. Moos then contacted Mr. Allred and informed him that a representative from El Paso would meet with him the following afternoon at the Property. Mr. Allred indicated that he would be able to meet at that time.

- 7. On July 8, 2010 Wayne Garner (El Paso Construction Supervisor) met with Mr. Clark Allred (son of Ardith Allred) and discussed the proposed well site location.
- **8.** On August 17, 2010 Jerry D. Allred and Associates (contract surveyor for El Paso E&P Company, L.P.) completed the survey report for the Allred Trust 2-31A1E proposed well site and access road right-of-way.
- 9. On August 19, 2010 Cameron Moos (Landman) informed Mr. Clark Allred that he was preparing the Damage Settlement and Release documents for the proposed well and he would be mailing them to him the next day.
- **10.** On August 20, 2010 Cameron Moos (Landman) mailed the documents for the proposed well along with a monetary compensation offer for surface damages to Mr. Clark Allred.
- 11. On August 25, 2010 Mr. Clark Allred called Cameron Moos (Landman) and informed him that he was going to rewrite the Damage Settlement & Release document and send the rewritten document to him.
- **12.** On September 4, 2010 Cameron Moos (Landman) received the rewritten Surface Access and Use Agreement from Mr. Clark Allred.
- 13. On September 9, 2010 Cameron Moos (Landman) forwarded the rewritten Surface Access and Use Agreement to the El Paso E&P Company, L.P. offices in Denver, Colorado for their review. Cameron Moos also contacted Mr. Clark Allred and arranged a meeting between Mr. Allred and Wayne Garner (Construction Supervisor) to take place on September 20, 2012 at the Property location.
- 14. On September 20, 2010 Wayne Garner (Construction Supervisor) met with Clark Allred (son of Ardith Allred) and discussed several issues relating to the placement of fencing around the completed well site.
- 15. On October 6, 2010 Cameron Moos (Landman) received instructions from the El Paso E&P Company, L.P. office in Denver regarding increasing the monetary compensation offer for surface damages to the Property while building the well site as well as proposed changes to the rewritten Surface Access and Use Agreement provided by Clark Allred.
- 16. On October 8, 2010 Cameron Moos (Landman) sent a letter to Clark Allred containing an increased monetary offer for the surface damages and some requested changes and additions to the language contained in the Surface Access and Use Agreement presented by Mr. Allred for this proposed well.
- 17. On October 26, 2010 Cameron Moos (Landman) received a telephone call from Clark Allred wherein Mr. Allred stated that the increased compensation offer for surface damages was insufficient and that he did not agree with any of El Paso's requested changes to the Surface Access and Use Agreement.
- **18.** On November 11, 2010 Cameron Moos (Landman) turned this proposed well over to Byron Moos (Independent Landman under contract to Land Professionals, Inc.)
- 19. On December 3, 2010 Byron Moos (Landman) contacted Clark Allred to ask him for permission for Jerry D. Allred & Associates' surveyors to enter the Property to conduct a survey for a proposed well site access road that would cross the Property. Mr. Allred stated that he wanted to meet with representatives of El Paso on the Property before giving permission to survey. Mr. Allred also stated that he would be unavailable to meet with the representatives of El Paso until sometime after the Christmas season.
- **20.** On March 15, 2012 David Allred (Landman) attempted to contact Clark Allred to inform him that El Paso would like to move forward with this well.
- 21. On March 27, 2012 David Allred (Landman) sent a letter to notify that we are moving forward with the process to obtain a permit.

- 22. On May 9, 2012 a proposed meeting was set up for the week of May 14th. El Paso is still in the process of obtaining an agreement but due to time restrictions feels that we must move forward.
- **23.** On May 14, 2012 David Allred (Landman) spoke with Clark Allred, he stated that he would be out of town and would contact El Paso when he returned.
- 24. On May 30, 2012 David Allred (Landman) left a message at Clark Allred's office.
- **25.** On September 30, 2013 Byron Moos (Landman) was instructed by EP Energy to once again commence negotiations toward reaching an agreement with Clark Allred for a surface use agreement for this proposed well site. Mr. Moos placed a telephone call to Mr. Allred and was connected to his voice mail. Mr. Moos left a message for Mr. Allred informing him of EP Energy's intention to restart negotiations for a surface use agreement.
- **26.** On October 3, 2013 Byron Moos (Landman) called Mr. Clark Allred at his office. He was connected to Mr. Allred's voice mail and left a message for Mr. Allred.
- 27. On October 7, 2013 Byron Moos (Landman) received a call from Mr. Clark Allred. Mr. Allred stated that he had been on vacation but that he would locate the surface use agreement that he had previously prepared and then e-mail it to Mr. Moos.
- **28.** On October 8, 2013 Byron Moos (Landman) received the surface use agreement from Mr. Clark Allred.
- **29.** On October 15, 2013 Byron Moos (Landman) completed reviewing and reworking the surface use agreement received from Mr. Clark Allred. He then e-mailed a copy of the surface use agreement to Mr. Allred.
- 30. On October 21, 2013 Byron Moos (Landman) contacted Mr. Clark Allred to determine if Mr. Allred had reviewed the surface use agreement sent to him earlier. Mr. Allred said that he had not had time to review the document yet but that he hoped to review it by the end of the week. Mr. Moos also e-mailed a copy of the Memorandum of Surface Use Agreement document that will be filed in the county recorder's office for his review.
- 31. On October 29, 2013 Byron Moos (Landman) received an e-mail from Mr. Clark Allred wherein he questioned why the language specifying the type of pump to be used on the well site after drilling is completed had been removed. Mr. Allred also stated that one of his requirements for the wellsite to be on the Property was for him to have access to the Property from the north.
- **32.** On October 30, 2013 Byron Moos (Landman) sent an e-mail to Mr. Clark Allred explaining why the language specifying what type of well pump to be used was removed. Mr. Moos also included in the e-mail suggested language to be used to replace the removed language.
- 33. On November 5, 2013 Byron Moos (Landman) sent an e-mail to Mr. Clark Allred stating that at the time negotiations for the wellsite were being conducted in 2010, EP Energy had a verbal agreement with the then owners of the tract of land to the north of the Property that would have allowed him to have access to the Property. However, in 2012 the tract of land to the north was purchased by the now current owner and that EP Energy was currently conducting negotiations with that surface owner for a right-of-way across his tract of land for access to the wellsite on the Property.
- 34. On November 8, 2013 Byron Moos (Landman) received an e-mail from Mr. Clark Allred wherein he stated that he would accept the revised well pump language. Mr. Clark also requested that EP Energy include in the right-of-way agreement being negotiated with the surface owner of the tract land to the north the right for him to use the road to access the Property and to be assigned the road if the well is abandoned.

- **35.** On December 11, 2013 Byron Moos (Landman) called Mr. Clark Allred's office to try and secure an appointment with Mr. Allred for the next day. The receptionist suggested that Mr. Moos call back the next day as she was unsure at that time as to what Mr. Allred's schedule was for the next day.
- 36. On December 12, 2013 Byron Moos (Landman) called Mr. Clark Allred's office to schedule an appointment with Mr. Allred. The receptionist stated that Mr. Allred would return his call later that day. Mr. Allred called back later in the day. Mr. Moos than explained to Mr. Allred that EP Energy could not grant Mr. Allred permission to use the well site access road that ran across the tract of land to the north of the Property. The right-of-way that EP Energy would secure from that surface owner would be an exclusive right-of-way agreement between that surface owner and EP Energy; thereby granting EP Energy exclusive use of that access road. EP Energy could not give permission to Mr. Allred to use that access road. Mr. Allred replied that EP Energy could include language in the right-of-way agreement with the surface owner to the north that would give him permission to also use the access road. Mr. Moos conveyed this information to EP Energy's offices in Houston and was informed that EP Energy was in no position to be negotiating a right-of-way agreement for Mr. Allred. Mr. Moos than called Mr. Allred to set an appointment to meet with him to further explain EP Energy's position regarding the access road right-of-way. Mr. Allred replied that if the purpose of the appointment was for Mr. Moos telling him that EP Energy could not grant him access to the property on the road across the tract to the north, than he would not waste his or Mr. Moos' time with that appointment. If however, Mr. Moos wanted to meet with him to discuss the type of language to be included in the right-of-way agreement with the surface owner to the north that would allow him to use the access road then he would meet with Mr. Moos to do this.
- 37. On December 14, 2013 Byron Moos (Landman) received an e-mail from Mr. Clark Allred in which Mr. Allred reemphasized his requirement for access to the Property from the north before any approval of the wellsite on the Property would be forthcoming.
- 38. As of December 30, 2013, EP Energy has not been able to acquire a signed Surface Damage and Release Agreement for the proposed Allred Trust 2-31A1E well in Section 31, Township 1 South, Range 1 West, U.S.M.

NOW THEREFORE, the undersigned affiant Byron Moos, of lawful age, being first duly sworn, depose and say, that the above facts are true and correct to the best of his knowledge, further Affiant saith not. Signed this 30th day of December, 2013.

By: Byron Moos, Affiant

ACKNOWLEDGEMENT

STATE OF UTAH

§

COUNTY OF UTAH

§

Before me, a Notary Public, in and for this state, on this 30th day of December, 2013, personally appeared Byron Moos, to me known to be the identical person who executed the within and foregoing instrument, and acknowledged to me that he executed the same as his own free and voluntary act and deed.

MICHAEL ERICKSON
Notary Public, State of Utah
Commission # 612609
My Commission Expires
August 10, 2015

NOTARY PUBLIC

API Well Number: 43047530020000 Application for Permit to Drill – State DOGM

Allred Trust 2-31A1E Uintah County, Utah

EL PASO E&P COMPANY, L.P.

Related Surface Information

1. <u>Current Surface Use:</u>

Livestock Grazing and Oil and Gas Production.

2. <u>Proposed Surface Disturbance:</u>

- The road will be crown and ditch. Water wings will be constructed on the access road as needed.
- The topsoil will be windrowed and re-spread in the borrow area.
- New road to be constructed will be approximately .26 miles in length and 66 feet wide.
- All equipment and vehicles will be confined to the access road, pad and area specified in the APD.

3. Location Of Existing Wells:

Existing oil, gas wells within one (1) mile radius of proposed well are provided in EXHIBIT C.

4. <u>Location And Type Of Drilling Water Supply:</u>

Drilling water: Roosevelt City/Ballard City Water

5. Existing/Proposed Facilities For Productive Well:

- There are no existing facilities that will be utilized for this well.
- A pipeline corridor .26 miles will parallel the proposed access road. The corridor will contain one 4 inch gas line and one 2 inch gas line and one 2 inch Salt Water disposal line. Rehabilitation of unneeded, previously disturbed areas will consist of backfilling and contouring the reserve pit area; backsloping and contouring all cut and fill slopes. These areas will be reseeded. Refer to plans for reclamation of surface for details.
- Upgrade and maintain access roads and drainage control structures (e.g., culverts, drainage dips, ditching, etc.) as necessary to prevent soil erosion and accommodate safe, year-round traffic.

6. Construction Materials:

 Native soil from road and location will be used for construction materials along with gravel and/or scoria road base material. In the event that conditions should necessitate graveling of all or part of the access road and location, surfacing materials will be purchased from commercial suppliers in the marketing area.

7. Methods For Handling Waste Disposal:

- The reserve pit will be designed to prevent the collection of surface runoff and will be constructed with a minimum of ½ the total depth below the original ground surface on the lowest point with the pit. The pit will be lined with a 20-mil polyethylene to prevent leakage of fluids. The liner will be rolled into place and secured at the ends, i.e. buried on top of the pit berms. Prior to use, the reserve pit will be fenced on three sides; the fourth side will be fenced at the time the rig is removed. Drilling fluids, cuttings and produced water will be contained in the reserve pit (trash will be place in the trash cage). Fluids in the reserve pit will be allowed to evaporate prior to pit burial.
- Garbage and other trash will be contained in the portable trash cage and hauled off the location to an authorized disposal site. Any trash on the pad will be cleaned up prior to the rig moving off location and hauled to an authorized disposal site.
- Sewage will be handled in Portable Toilets.
- Produced water will be placed in the reserve pit for a period not to exceed ninety days after initial production. Any
 hydrocarbons produced during completion work will be contained in test tanks and removed from the location at a
 later date.
- Water from the reserve pit may be used for drilling of additional wells. The water will be trucked along access roads as approved in pertinent APD's

8. Ancillary Facilities:

There will be no ancillary facilities associated with this project.

API Well Number: 43047530020000 Page 2
Application for Permit to Drill – State DOGM Allred Trust 2-31A1E

9. Surface Reclamation Plans:

Uintah County, Utah

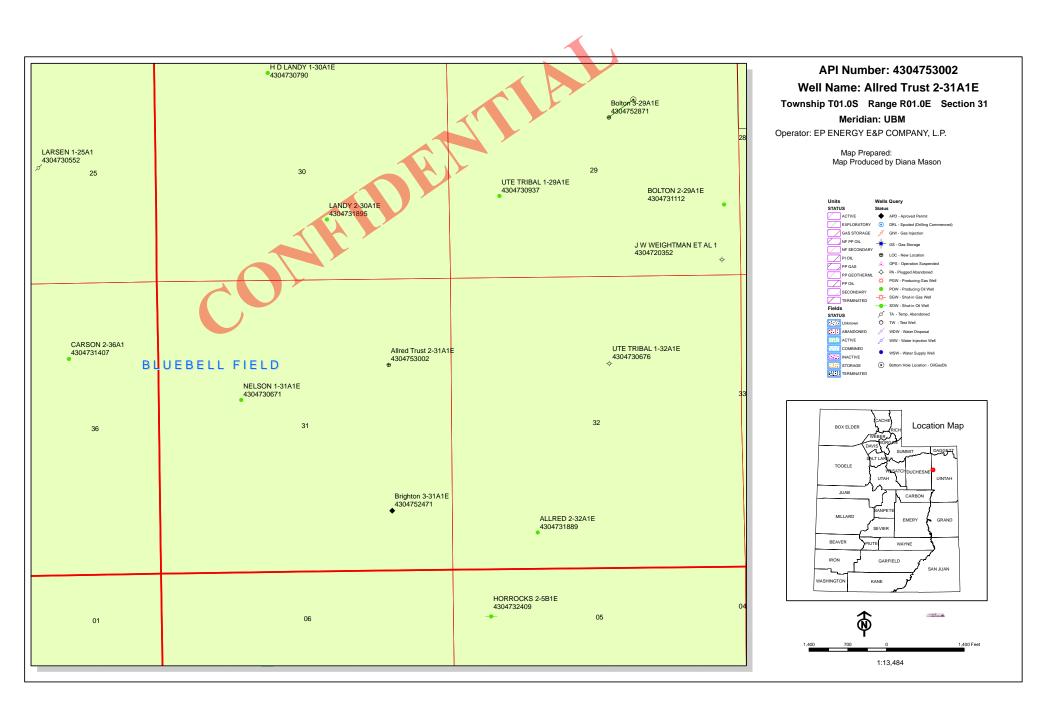
Backfilling of the pits will be done when dry. In the event of a dry hole, the location will be re-contoured, the topsoil will be distributed evenly over the entire location, and the seedbed prepared.

- Seed will be planted after September 15th, and prior to ground frost, or seed will be planted after the frost has left and before May 15th. Slopes to steep for machinery will be hand broadcast and raked with twice the specified amount of seed.
 - 1. The construction program and design are on the attached cut, fill and cross sectional diagrams.
 - 2. Prior to construction, all topsoil will be removed from the entire site and stockpiled. Topsoil for this site is the first 6 inches of soil materials.
 - 3. After the location has been reshaped and after redistributing the topsoil, the operator will rip and scarify the drilling platform and access road on the contour, to a depth of at least 12 inches.
- Rehabilitation will begin upon the completion of the drilling. Complete rehabilitation will depend on weather conditions and the amount of time required to dry the reserve pit.
 - 1. All rehabilitation work including seeding will be completed as soon as weather and the reserve pit conditions are appropriate.
 - 2. Landowner will be contacted for rehabilitation requirements.

10. Surface Ownership:

Ardith B. Allred, Trustee of the Ardith B Allred Trust dated March 24, 2005 RR 2 Box 2667 Roosevelt, Utah 84066 435-353-4691

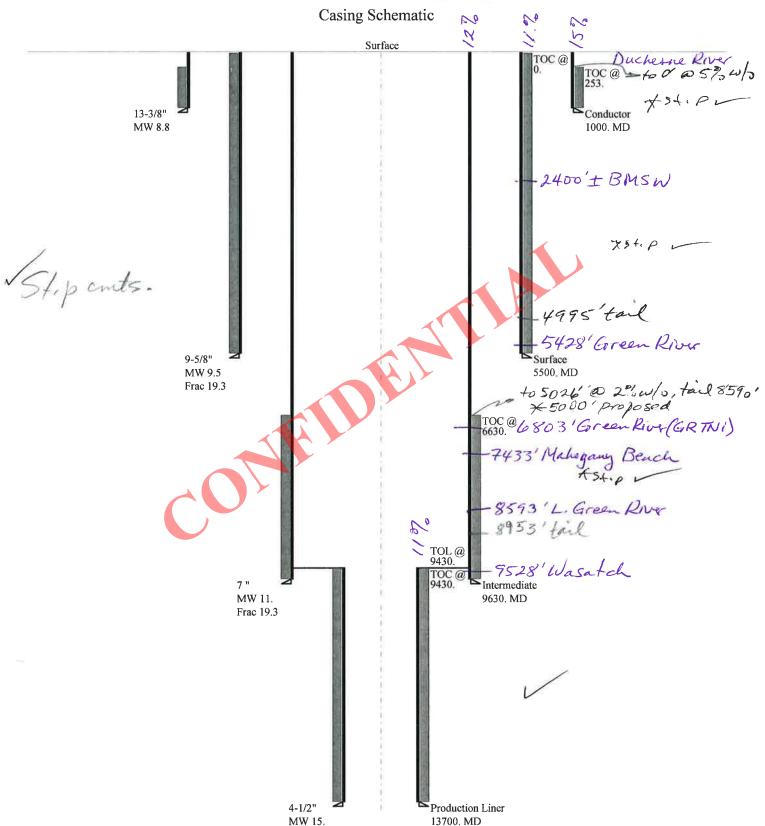
Other Information:


- The surface soil consists of clay, and silt.
- Flora vegetation consists of the following: Sagebrush, Juniper and prairie grasses.
- Fauna antelope, deer, coyotes, raptors, small mammals, and domestic grazing animals.
- Current surface uses Livestock grazing and mineral exploration and production.
- Operator and Contact Persons:

Construction and Reclamation:
EP Energy E & P Company
Wayne Garner
PO Box 410
Altamont, Utah 84001
435-454-3394 – Office
435-823-1490 – Cell

Regarding This APD
EP Energy E & P Company
Maria S. Gomez
1001 Louisiana, Rm 2730D
Houston, Texas 77002
713-997-5038 – Office

Drilling


EP Energy E & P Company Joe Cawthorn – Drilling Engineer 1001 Louisiana, Rm 2523B Houston, Texas 77002 713-997-5929 – office 832-465-2882 – Cell

BOPE REVIEW EP ENERGY E&P COMPANY, L.P. Allred Trust 2-31A1E 43047530020000

BOPE REVIEW EP	ENERGY E&F	COMPAN	Y, L.P. A	llı	red Trust 2	2-31	A1E 43	304753002	0000		
Well Name		EP ENERGY E&	P COMPANY, L.	.P.	Allred Trust 2-31	A1E 43	3047530020	od			
String		COND	SURF	ī	11	L1		7			
Casing Size(")		13.375	9.625	ī	7.000	4.	500	7			
Setting Depth (TVD)		1000	5500	ī	9630	13	3700	7			
Previous Shoe Setting Deptl	h (TVD)	0	1000	ī	5500	96	30	i			
Max Mud Weight (ppg)		8.8	9.5	ī	11.0	15	5.0	<u> </u>			
BOPE Proposed (psi)		1000	5000	ī	5000	10	0000	i			
Casing Internal Yield (psi)		2730	5750	ī	11220	12	2410	<u> </u>			
Operators Max Anticipated	Pressure (psi)	10046		ì		14	l.1	j			
Calculations		COND Str	ring	_			13.375	"			
Max BHP (psi) .052*Setting Depth*MW							_				
				_		458		BOPE Ade	quate For Drilling And Setting Casing at Depth?		
MASP (Gas) (psi)		Max BH	P-(0.12*Set	tti	ng Depth)=	338		YES	rotating head, WBM		
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Set	tti	ng Depth)=	238	=	YES	OK		
						*Can Full	Expected Pressure Be Held At Previous Shoe?				
Pressure At Previous Shoe	Max BHP22*(S	etting Depth	- Previous S	oe Depth)=	238		NO				
Required Casing/BOPE Tes				100	0	psi					
*Max Pressure Allowed @ l	Previous Casing	Shoe=				0		psi *As	sumes 1psi/ft frac gradient		
Calculations		SURF Str	ring	_			9,625	"			
Max BHP (psi)		.0)52*Setting	D	epth*MW=	271	7				
				1		,		BOPE Ade	quate For Drilling And Setting Casing at Depth?		
MASP (Gas) (psi)		Мах ВН	P-(0.12*Set	tti	ng Depth)=	205	7	YES	rotating head, Annular, WBM		
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Se	tti	ng Depth)=	150	7	YES	ОК		
								*Can Full	Expected Pressure Be Held At Previous Shoe?		
Pressure At Previous Shoe	Max BHP22*(S	etting Depth	- Previous S	Sh	oe Depth)=	172	7	NO	ОК		
Required Casing/BOPE Tes	st Pressure=					402	5	psi			
*Max Pressure Allowed @ 1	Previous Casing	Shoe=				1000	0	psi *As	sumes 1psi/ft frac gradient		
Calculations		I1 Strin	ıg	_			7.000	"			
Max BHP (psi)		.0	052*Setting	D	epth*MW=	550	8				
						,		BOPE Ade	quate For Drilling And Setting Casing at Depth?		
MASP (Gas) (psi)		Max BH	P-(0.12*Set	tti	ng Depth)=	435	2	YES			
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Set	tti	ng Depth)=	338	9	YES	ОК		
								*Can Full	Expected Pressure Be Held At Previous Shoe?		
Pressure At Previous Shoe	Max BHP22*(S	etting Depth	- Previous S	Sh	oe Depth)=	459	9	YES	ОК		
Required Casing/BOPE Tes	st Pressure=					785	4	psi			
*Max Pressure Allowed @ l	Previous Casing	Shoe=				550	0	psi *As	sumes 1psi/ft frac gradient		
Calculations		L1 Strii	ıg	_			4.500	11			
Max BHP (psi)		.0	052*Setting	D	epth*MW=	106	86				
								BOPE Adequate For Drilling And Setting Casing at Depth			
MASP (Gas) (psi)		Max BH	P-(0.12*Set	tti	ng Depth)=	904:	2	YES			
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Set	tti	ng Depth)=	767	2	YES	ОК		

43047530020000 Allred Trust 2-31A1E

Well name:

43047530020000 Allred Trust 2-31A1E

Operator:

EP ENERGY E&P COMPANY, L.P.

String type:

Conductor

Project ID: 43-047-53002

Location:

UINTAH COUNTY

Minimum design factors: **Environment:**

1.125

Collapse

Mud weight: 8.800 ppg

Design is based on evacuated pipe.

H2S considered?

Surface temperature:

No 74 °F

Bottom hole temperature: Temperature gradient:

88 °F 1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Collapse:

Design factor

Design factor

1.00

Cement top:

253 ft

Burst

Max anticipated surface

pressure: Internal gradient:

Design parameters:

337 psi 0.120 psi/ft

Calculated BHP

457 psi

8 Round LTC:

Premium: Body yield:

457

Tension:

8 Round STC: 1.80 (J) 1.70 (J) Buttress: 1.60 (J)

1.50 (J) 1.50 (B)

5.97

47.4

No backup mud specified.

Tension is based on buoyed weight. Neutral point: 870 ft

Non-directional string.

Run Seq	Segment Length	Size	Nominal Weight	Grade	End Finish	True Vert Depth	Measured Depth	Drift Diameter	Est. Cost
1	(ft) 1000	(in) 13.375	(lbs/ft) 54.50	J-55	ST&C	(ft) 1000	(ft) 1000	(in) 12.49	(\$) 12408
Run Seq	Collapse Load (psi)	Collapse Strength	Collapse Design Factor	Burst Load (psi)	Burst Strength	Burst Design Factor	Tension Load (kips)	Tension Strength (kips)	Tension Design Factor

2730

Prepared

Helen Sadik-Macdonald

1130

2.472

Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: September 26,2012

Salt Lake City, Utah

514

10.84 J

Remarks:

1

457

Collapse is based on a vertical depth of 1000 ft, a mud weight of 8.8 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

43047530020000 Allred Trust 2-31A1E Well name:

EP ENERGY E&P COMPANY, L.P. Operator:

Surface String type:

Project ID: 43-047-53002

UINTAH COUNTY Location:

Design parameters: Minimum design factors: **Environment:** H2S considered?

Collapse Collapse:

Mud weight: 9.500 ppg Design factor Surface temperature: 1.125

Design is based on evacuated pipe. Bottom hole temperature: 151 °F 1.40 °F/100ft Temperature gradient:

Burst: Design factor 1.00 Cement top: Surface

Burst

Max anticipated surface

pressure: 4.347 psi

Internal gradient: 0.120 psi/ft

Calculated BHP 5,007 psi

No backup mud specified.

Tension:

8 Round STC: 1.80 (J) 8 Round LTC: 1.70 (J) Buttress: 1.60 (J)

1.50 (J) Premium: Body yield: 1.50 (B)

Tension is based on buoyed weight. Neutral point: 4,723 ft

Re subsequent strings:

Non-directional string.

Minimum section length:

Next setting depth: 9.630 ft Next mud weight: 11.000 ppg Next setting BHP: 5,503 psi Fracture mud wt: 19.250 ppg

No

74 °F

100 ft

Fracture depth: 5,500 ft Injection pressure: 5,500 psi

Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	5500	9.625	40.00	N-80	LT&C	5500	5500	8.75	69983
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
-	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor
1	2714	3090	1.138	5007	5750	1.15	188.9	737	3.90 J

Helen Sadik-Macdonald Prepared Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: September 26,2012 Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 5500 ft, a mud weight of 9.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Well name:

43047530020000 Allred Trust 2-31A1E

Operator:

EP ENERGY E&P COMPANY, L.P.

String type:

Intermediate

Design is based on evacuated pipe.

Project ID: 43-047-53002

Location:

Collapse

UINTAH COUNTY

Minimum design factors: **Environment:**

Collapse:

Design factor 1.125

H2S considered?

Surface temperature:

74 °F 209 °F

No

Bottom hole temperature: Temperature gradient:

1.40 °F/100ft

Minimum section length: 1,000 ft

Burst:

Design factor

1.00

Cement top:

6,630 ft

Burst

Max anticipated surface

No backup mud specified.

pressure: Internal gradient: Calculated BHP

Design parameters:

Mud weight:

7,511 psi

11.000 ppg

0.220 psi/ft 9,630 psi

Tension:

1.80 (J) 8 Round STC: 1.80 (J) 8 Round LTC: 1.60 (J) Buttress:

Premium:

1.50 (J) 1.60 (B) Body yield:

Tension is based on air weight. 8.027 ft Neutral point:

Non-directional string.

Re subsequent strings:

Next setting depth: 13,700 ft Next mud weight: 15.000 ppg Next setting BHP: 10,675 psi Fracture mud wt: 19.250 ppg Fracture depth:

Injection pressure:

9,630 ft 9,630 psi

Run	Segment	=	Nominal		End	True Vert	Measured	Drift	Est.	
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost	
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)	
1	9630	7	29.00	P-110	LT&C	9630	9630	6.059	108748	
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension	
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design	
	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor	
1	5503	8530	1.550	9630	11220	1.17	279.3	797	2.85 J	

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: October 12,2012 Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 9630 ft, a mud weight of 11 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Well name:

43047530020000 Allred Trust 2-31A1E

Operator:

EP ENERGY E&P COMPANY, L.P.

String type:

Production Liner

Project ID: 43-047-53002

Location:

Collapse

UINTAH COUNTY

Minimum design factors:

Collapse:

Environment: H2S considered?

No

15.000 ppg Design factor Internal fluid density: 2.330 ppg

1.125

Surface temperature: Bottom hole temperature:

74 °F 266 °F

Temperature gradient:

1.40 °F/100ft

Minimum section length: 1,000 ft

Burst:

Design factor

1.00

Cement top:

9,430 ft

Burst

Max anticipated surface

pressure: Internal gradient: Calculated BHP

Design parameters:

Mud weight:

7,661 psi 0.220 psi/ft

10,675 psi

Tension:

8 Round STC: 8 Round LTC:

Buttress: Premium:

Body yield:

1.80 (J) 1.80 (J) 1.60 (J)

1.50 (J) 1.60 (B)

Liner top: 9,430 ft Non-directional string.

No backup mud specified.

Tension is based on air weight. 12,748 ft Neutral point:

Segment		Nominal		End	True Vert	Measured	Drift	Est.	
Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost	
(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)	
4300	4.5	13.50	P-110	LT&C	13700	13700	3.795	24095	
Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension	
Load	Strength	Design	Load	Strength	Design	Load	Strength	Design	
(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor	
9017	10680	1.184	10675	12410	1.16	58	338	5.82 J	
	Length (ft) 4300 Collapse Load (psi)	Length Size (ft) (in) 4300 4.5 Collapse Collapse Load Strength (psi) (psi)	Length (ft) (in) (lbs/ft) 4300 4.5 13.50 Collapse Collapse Collapse Load Strength Design (psi) (psi) Factor	Length Size Weight (lbs/ft) 4300 4.5 13.50 P-110 Collapse Collapse Collapse Burst Load Strength Design Load (psi) (psi) Factor (psi)	Length Size Weight Grade Finish (ft) (in) (lbs/ft) 4300 4.5 13.50 P-110 LT&C Collapse Collapse Collapse Burst Burst Load Strength Design Load Strength (psi) (psi) Factor (psi) (psi)	Length Size Weight Grade Finish Depth (ft) (in) (lbs/ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (Length (ft)Size (in)Weight (lbs/ft)Grade (red)Finish (ft)Depth (ft)Depth (ft)43004.513.50P-110LT&C1370013700Collapse Load (psi)Collapse Strength (psi)Collapse Design (psi)Burst Strength (psi)Burst 	Length (ft)Size (in)Weight (lbs/ft)GradeFinish (ft)Depth (ft)Depth (ft)Diameter (ft)43004.513.50P-110LT&C13700137003.795Collapse Load Strength (psi)Collapse Design (psi)Collapse Design (psi)Burst Strength (psi)Burst Design Design (psi)Burst Design Design (psi)Tension Design (psi)Tension Strength (kips)	LengthSize (ft)Weight (lbs/ft)GradeFinish (ft)Depth (ft)Depth (ft)Diameter (ft)Cost (in)43004.513.50P-110LT&C13700137003.79524095CollapseCollapseCollapseBurstBurstBurstTensionTensionTensionLoadStrengthDesignLoadStrengthDesignLoadStrengthDesign(psi)(psi)Factor(psi)Factor(kips)(kips)Factor

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: September 26,2012

Salt Lake City, Utah

For this liner string, the top is rounded to the nearest 100 ft. Collapse is based on a vertical depth of 13700 ft, a mud weight of 15 ppg. An Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

ON-SITE PREDRILL EVALUATION

Utah Division of Oil, Gas and Mining

Operator EP ENERGY E&P COMPANY, L.P.

Well Name Allred Trust 2-31A1E

API Number 43047530020000 APD No 6478 Field/Unit BLUEBELL

Location: 1/4,1/4 SENE Sec 31 Tw 1.0S Rng 1.0E 1569 FNL 1113 FEL

GPS Coord 591687 4467827 Surface Owner Ardith B. Allred, Trustee of the Ardith

(UTM) B Allred Trust

Participants

Clark Allred (Executor of Allred Trust); David Allred, Jarred Thacker (EP Energy); Jerry Allred (Jerry D. Allred & Associates Surveying Consultants); David Hackford (DOGM).

Regional/Local Setting & Topography

This site is in an area that is irrigated pasture land used primarily for cattle grazing. It is generally flat and level draining gradually to the south. Indian Bench which runs north to south is approx. 900' to the east. A paved county road runs along the top of this bench (Whiterocks Highway). There are numerous seasonal seaps and springs along the base of this bench. Montez Reservoir and Roberts Pond are located one mile to the southwest. There are numerous canals and irrigation ditches in this entire area. The closest dwelling is approx. 1000' to the east.

Surface Use Plan

Current Surface Use

Agricultural Grazing

New Road Miles Src Const Material Surface Formation

0.25 Width 335 Length 425 Offsite UNTA

Ancillary Facilities N

Waste Management Plan Adequate? Y

Environmental Parameters

Affected Floodplains and/or Wetlands N

Flora / Fauna

This area is irrigated pasture covered with a variety of grasses, and is used to graze cattle.

Soil Type and Characteristics

Sandy clay loam.

Erosion Issues N

Sedimentation Issues N

Site Stability Issues Y

This site is extremely boggy at times. It will be necessary to haul in several feet of base to construct a location and access road.

Drainage Diverson Required? N

Berm Required? N

Erosion Sedimentation Control Required? N

Paleo Survey Run? Paleo Potental Observed? N Cultural Survey Run? Cultural Resources? N

Reserve Pit

Site-Specific Factors	Site Ranl	king	
Distance to Groundwater (feet)		20	
Distance to Surface Water (feet)	300 to 1000	2	
Dist. Nearest Municipal Well (ft)	>5280	0	
Distance to Other Wells (feet)	300 to 1320	10	
Native Soil Type	Low permeability	0	
Fluid Type	TDS>5000 and	10	
Drill Cuttings	Normal Rock	0	
Annual Precipitation (inches)		0	
Affected Populations			
Presence Nearby Utility Conduits	Present	1 5	
Fi	nal Score	57	1 Sensitivity Level

Characteristics / Requirements

Reserve pit will be in an area of cut on the west side of the location. It will be 110' by 150' and 12' deep.

Closed Loop Mud Required? N Liner Required? Y Liner Thickness 16 Pit Underlayment Required? Y

Other Observations / Comments

EP Energy does not have a signed landowner agreement at this time.

David Hackford 8/23/2012 **Evaluator Date / Time**

Application for Permit to Drill Statement of Basis

Utah Division of Oil, Gas and Mining

APD No	API WellNo	Status	Well Type	Surf Owner	CBM
6478	43047530020000	LOCKED	OW	P	No
Operator	EP ENERGY E&P COMP	ANY, L.P.	Surface Owner-APD	Ardith B. Allred, Trustee of the Ardith B Allred Trust	
Well Name	Allred Trust 2-31A1E		Unit		
Field	BLUEBELL		Type of Work	DRILL	
Location		U 1569 FN	L 1113 FEL GP	S Coord	

(UTM) 591683E 4467832N

Geologic Statement of Basis

EP Energy proposes to set 1,000 feet of conductor and 4,600 feet of surface casing at this location. The conductor and surface hole will be drilled with fresh water mud. The depth to the base of the moderately saline ground water is estimated to be 2,400 feet. A search of Division of Water Rights records indicates that there are 31 water wells within a 10,000 foot radius of the center of Section 31. These wells range in depth from 22 to 660 feet. Depth is not listed for 3 wells. Listed uses are domestic, irrigation, stock watering, municipal and industrial. This location lies on alluvial valley fill derived from the Duchesne River Formation. Water may be found in the Duchesne River Formation and alluvium deposited in valley floors. Deeper wells may be producing water from the Uinta Formation. The proposed casing and cement should adequately protect ground water in this area.

Brad Hill 9/25/2012
APD Evaluator Date / Time

Surface Statement of Basis

This site is irrigated pasture land and is seasonally very boggy. It will be necessary to haul in several feet of fill to construct a stable pad to support a drilling rig and other equipment. The access road will also require road base. Water will very likely be encountered while digging the reserve pit and this water wil have to be removed before lining the pit. EP Energy has encountered these problems in the past is this same area and have done an adaquate job of location construction.

Mr. Clark Allred (Executor of Allred Trust) represented landowners at this meeting. Mr. David Allred and Mr. Jarred Thacker represented EP Energy. Clark Allred stated that he had numerous concerns concerning this well site, but the only one he would discuss was the fact that it would be in sight of his Mother's house which is approx. 1000' to the east, and is the closest dwelling. I asked Clark Allred if he would prefer this site be moved to another area, and he wouldn't discuss it. Mr David Allred told Mr. Clark Allred that EP Energy would remove and replace any fences as Mr. Clark Allred directed. EP would fence the location, and install cattle guards or gates at Mr. Clark Allred direction. Mr. Clark Allred would not discuss this issue either. Mr. David Allred stated that four years ago Mr. Clark Allred leased the mineral rights to this property to EP Energy, and because of that should realize a well would be drilled.

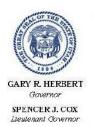
If the proper steps are taken while constructing the location, this site is as good a site for a well as any in the area.

David Hackford 8/23/2012
Onsite Evaluator Date / Time

Conditions of Approval / Application for Permit to Drill

Category

Condition


Pits

A synthetic liner with a minimum thickness of 16 mils with a felt subliner shall be properly installed and maintained in the reserve pit.

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED: 7/22/2012 API NO. ASSIGNED: 43047530020000 WELL NAME: Allred Trust 2-31A1E OPERATOR: EP ENERGY E&P COMPANY, L.P. (N3850) PHONE NUMBER: 713 997-5038 CONTACT: Maria S. Gomez PROPOSED LOCATION: SENE 31 010S 010E Permit Tech Review: **SURFACE: 1569 FNL 1113 FEL Engineering Review:** Geology Review: **BOTTOM:** 1569 FNL 1113 FEL **COUNTY: UINTAH LATITUDE: 40.35602** LÓNGITUDE: -109.92031 **UTM SURF EASTINGS: 591683.00** NORTHINGS: 4467832.00 FIELD NAME: BLUEBELL LEASE TYPE: 4 - Fee **LEASE NUMBER:** Fee PROPOSED PRODUCING FORMATION(S): GREEN RIVER(LWR)-WASATCH SURFACE OWNER: 4 - Fee **COALBED METHANE: NO RECEIVED AND/OR REVIEWED: LOCATION AND SITING:** ✓ PLAT R649-2-3. Bond: STATE - 400JU0708 Unit: R649-3-2. General **Potash** Oil Shale 190-5 Oil Shale 190-3 R649-3-3. Exception **Drilling Unit** Oil Shale 190-13 Board Cause No: Cause 139-84 Water Permit: Roosevelt City / Ballard City **Effective Date: 12/31/2008 RDCC Review:** Siting: 660' Fr Drl U Bdry & 1320' Fr Other Wells Fee Surface Agreement Intent to Commingle R649-3-11. Directional Drill **Commingling Approved** Comments: Presite Completed 2 - Surface Agreement Exception - BHILL
5 - Statement of Basis - bhill
8 - Cement to Surface -- 2 strings - ddoucet
12 - Cement Volume (3) - ddoucet Stipulations:

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: Allred Trust 2-31A1E API Well Number: 43047530020000

Lease Number: Fee

Surface Owner: FEE (PRIVATE) **Approval Date:** 3/12/2014

Issued to:

EP ENERGY E&P COMPANY, L.P., 1001 Louisiana, Houston, TX 77002

Authority:

Pursuant to Utah Code Ann. 40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 139-84. The expected producing formation or pool is the GREEN RIVER(LWR)-WASATCH Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

Exception Location:

In accordance with Rule R649-3-34(9), the Division of Oil, Gas and Mining shall establish minimum wellsite restoration requirements for this well. Prior to plugging and abandonment of this well, the operator shall notify the Division and allow the Division to establish such minimum wellsite restoration requirements in advance of the operator commencing plugging and abandonment operations.

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

Compliance with the Conditions of Approval/Application for Permit to Drill outlined in the Statement of Basis (copy attached).

Cement volumes for the 13 3/8" and 9 5/8" casing strings shall be determined from actual hole diameters in order to place cement from the pipe setting depths back to the surface.

Cement volume for the 7" intermediate string shall be determined from actual hole

diameter in order to place cement from the pipe setting depth back to 5000' MD as indicated in the submitted drilling plan.

Additional Approvals:

The operator is required to obtain approval from the Division of Oil, Gas and mining before performing any of the following actions during the drilling of this well:

- Any changes to the approved drilling plan contact Dustin Doucet
- Significant plug back of the well contact Dustin Doucet
- Plug and abandonment of the well contact Dustin Doucet

Notification Requirements:

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

• Within 24 hours following the spudding of the well - contact Carol Daniels OR

submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website

at http://oilgas.ogm.utah.gov

- 24 hours prior to testing blowout prevention equipment contact Dan Jarvis
- 24 hours prior to cementing or testing casing contact Dan Jarvis
- Within 24 hours of making any emergency changes to the approved drilling program
 - contact Dustin Doucet
- 24 hours prior to commencing operations to plug and abandon the well contact Dan Jarvis

Contact Information:

The following are Division of Oil, Gas and Mining contacts and their telephone numbers (please leave a voicemail message if the person is not available to take the call):

- Carol Daniels 801-538-5284 office
- Dustin Doucet 801-538-5281 office

801-733-0983 - after office hours

• Dan Jarvis 801-538-5338 - office

801-231-8956 - after office hours

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
 - Requests to Change Plans (Form 9) due prior to implementation
 - Written Notice of Emergency Changes (Form 9) due within 5 days
- Notice of Operations Suspension or Resumption (Form 9) due prior to implementation
 - Report of Water Encountered (Form 7) due within 30 days after completion
- \bullet Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:


For John Rogers Associate Director, Oil & Gas

	STATE OF UTAH		FORM 9
	DEPARTMENT OF NATURAL RESOURC DIVISION OF OIL, GAS, AND MIN		5.LEASE DESIGNATION AND SERIAL NUMBER: Fee
SUNDR	RY NOTICES AND REPORTS	ON WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	oposals to drill new wells, significantly reenter plugged wells, or to drill horizon for such proposals.		7.UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: Allred Trust 2-31A1E
2. NAME OF OPERATOR: EP ENERGY E&P COMPANY,	L.P.		9. API NUMBER: 43047530020000
3. ADDRESS OF OPERATOR: 1001 Louisiana, Houston,	TX, 77002 713 997-5	PHONE NUMBER: 038 Ext	9. FIELD and POOL or WILDCAT: BLUEBELL
4. LOCATION OF WELL FOOTAGES AT SURFACE: 1569 FNL 1113 FEL			COUNTY: UINTAH
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 31 Township: 01.0S Range: 01.0E Merid	ian: U	STATE: UTAH
11. CHEC	K APPROPRIATE BOXES TO INDICAT	TE NATURE OF NOTICE, REPOR	RT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
NOTICE OF INTENT Approximate date work will start:	ACIDIZE	ALTER CASING	CASING REPAIR
4/29/2014	✓ CHANGE TO PREVIOUS PLANS CHANGE WELL STATUS	CHANGE TUBING COMMINGLE PRODUCING FORMATIONS	☐ CHANGE WELL NAME ☐ CONVERT WELL TYPE
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	FRACTURE TREAT	NEW CONSTRUCTION
·	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK
SPUD REPORT Date of Spud:	PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION
Date of Spud.	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	TEMPORARY ABANDON
DRILLING REPORT	U TUBING REPAIR WATER SHUTOFF	VENT OR FLARE SI TA STATUS EXTENSION	☐ WATER DISPOSAL ☐ APD EXTENSION
Report Date:			
	WILDCAT WELL DETERMINATION	OTHER	OTHER:
Change the settin the setting on the s change from 9630' I 13700 TVD. The MI	g depth of the 13 3/8" from 9 5/8" from 5500' MD/TVD to MD/TVD to 10000' TVD. The D setting of TVD directional separate sundry.	1000' to 700'. Change o 3200 TVD and the 7" e liner depth is to stay at will be about 30' deeper	Approved by the Utah Division of Oil, Gas and Mining
NAME (PLEASE PRINT) Maria S. Gomez	PHONE NUMB 713 997-5038	ER TITLE Principal Regulatory Analys	st
SIGNATURE N/A		DATE 4/29/2014	

Page 1/2

Drilling Schematic

Page 2/2

DRILLING PROGRAM

CASING PROGRAM	SIZE	INTE	RVAL	WT.	GR.	CPLG.	BURST	COLLAPSE	TENSION
CONDUCTOR	13 3/8"	0	700	54.5	J-55	STC	2,740	1,130	514
SURFACE	9-5/8"	0	3200	40.00	N-80	LTC	5,750	3,090	737
INTERMEDIATE	7"	0	10000	29.00	HCP-110	LTC	11,220	9,750	797
PRODUCTION LINER	5"	9800	13700	18.00	HCP-110	STL	13,940	15,450	495

CEMENT PROGRA	AM	FT. OF FILL	DESCRIPTION	SACKS	EXCESS	WEIGHT	YIELD
CONDUCTOR		700	Class G + 3% CACL2	879	100%	15.8 ppg	1.15
SURFACE	Lead	2,700	EXTENDACEM SYSTEM: Type V Cement + 5 lbm/sk Silicalite Compacted + 0.25 lbm/sk Kwik Seal + 0.125 lbm/sk Poly- E-Flake + 2% Bentonite	427	75%	11.0 ppg	3.16
SURFACE	Tail	500	HALCEM SYSTEM: Class G Cement + 3 lbm/sk Silicalite Compacted + 1% Salt + 0.3% Econolite + 0.25 lbm/sk Poly-E-Flake + 0.25 lbm/sk Kwik Seal + 0.5% HR-5	194	50%	14.3 ppg	1.31
INTERMEDIATE	Lead	5,400	EXPANDACEM SYSTEM: 6% Bentonite + 0.2% Econolite + 0.3% Versaset + 0.7% HR-5 + 0.3% Super CBL + 0.2% Halad(R)-322 + 0.125 lbm/sk Poly-E-Flake	466	10%	12.5 ppg	1.91
	Tail	1,900	BONDCEM SYSTEM: Class G Cement + 4% Bentonite + 0.25 Poly-E-Flake + 0.1% Halad-413 + 5 lb/sk Silicalite Compacted + 0.15% SA-1015 + 0.5% HR-5	196	10%	13.0 ppg	1.65
PRODUCTION LINER		3,900	EXTENDACEM SYSTEM: Class G Cement + 0.3% Super CBL + 0.6% SCR- 100 + 0.3% Halad-413 + 0.125 lbm/sk Poly-E-Flake + 3 lbm/sk Silicalite Compacted + 20% SSA-1 + 0.1% SA- 1015	231	25%	14.20	1.47

FLOAT EQUIPMENT & CE	NTRALIZERS
CONDUCTOR	PDC drillable guide shoe, 1 joint, PDC drillable float collar. Thread lock all float equipment. Install bow
CONDUCTOR	spring centralizers on the bottom 3 joints of casing.
SURFACE	PDC drillable guide shoe, 1 joint casing, PDC drillable float collar & Stage collar. Thread lock all float
SURFACE	equipment. Install bow spring centralizers on the bottom 3 joints of casing & every 3rd joint thereafter.
INTERMEDIATE	PDC drillable 10M,P-110 float shoe, 1 joint, PDC drillable 10M, P-110 float collar. Thread lock all float
INTERMEDIATE	equipment. Maker joint at 8,500'.
LINER	Float shoe, 1 joint, float collar, 1 joint, landing collar. Thread lock all FE. Maker joints every 1000'.

PROJECT ENGINEER(S):	Brad MacAfee	713-997-6383	
MANAGER:	Bob Dodd		

Alexis Huefner < alexishuefner@utah.gov>

24hr Notice Spud, Run & Cement Casing

1 message

LANDRIG009 (Precision 406) < LANDRIG009@epenergy.com>

Sun, May 4, 2014 at 3:40

To: "alexishuefner@utah.gov" <alexishuefner@utah.gov>, "MacAfee, Bradley D"

<Brad.MacAfee@epenergy.com>, "caroldaniels@utah.gov" <caroldaniels@utah.gov>, David Hackford <davidhackford@utah.gov>, "dennisingram@utah.gov" <dennisingram@utah.gov>, "Dodd, Robert W"

<Robert.Dodd@epenergy.com>, "Morales, Lisa" <Lisa.Morales@epenergy.com>, "Gomez, Maria S"

<Maria.Gomez@epenergy.com>, "Evans, Perry (Contractor)" <Perry.Evans@epenergy.com>, "Walt, Michael
Joseph" <Michael.Walt@epenergy.com>

RE: EP Energy LLC

Allred Trust 2-31A1E

API # 43047530020000

Bluebell Field

Uintah County, UT

1569 FNL 1113 FEL SENE 31 15 1E

Leon Ross Drilling Rig 26 spudded the well @ 14:00 hrs 5/4/2014 & plan on running & cementing 13-3/8" 54.5# J-55 STC Conductor casing to +/- 700' within 24hrs.

Regards,

Tony Wilkerson

Wellsite Supervisor

EP Energy / PD 406

713-997-1220 (Rig)

318-715-7602 (Cell)

THIS E-MAIL AND ANY MATERIALS TRANSMITTED WITH IT MAY CONTAIN CONFIDENTIAL OR PROPRIETARY MATERIAL FOR THE SOLE USE OF THE INTENDED RECIPIENT. ANY REVIEW, USE, DISTRIBUTION OR DISCLOSURE BY OTHERS IS STRICTLY PROHIBITED. IF YOU ARE NOT THE INTENDED RECIPIENT, OR AUTHORIZED TO RECEIVE THE INFORMATION FROM THE RECIPIENT, PLEASE NOTIFY THE SENDER BY REPLY E-MAIL AND DELETE ALL COPIES OF THIS MESSAGE.

Alexis Huefner < alexishuefner@utah.gov>

24hr Notice Spud, Run & Cement Casing

1 message

LANDRIG009 (Precision 406) < LANDRIG009@epenergy.com>

Sun, May 11, 2014 at 11:50

To: "alexishuefner@utah.gov" <alexishuefner@utah.gov>, "MacAfee, Bradley D"

- <Brad.MacAfee@epenergy.com>, "caroldaniels@utah.gov" <caroldaniels@utah.gov>, David Hackford
- <davidhackford@utah.gov>, "dennisingram@utah.gov" <dennisingram@utah.gov>, "Dodd, Robert W"
 <Robert.Dodd@epenergy.com>, "Morales, Lisa" <Lisa.Morales@epenergy.com>, "Gomez, Maria S"
- <Maria.Gomez@epenergy.com>, "Evans, Perry (Contractor)" <Perry.Evans@epenergy.com>, "Walt, Michael Joseph" < Michael. Walt@epenergy.com>

RE: EP Energy LLC

Allred Trust 2-31A1E

15 1E 31

API # 43047530020000

Bluebell Field

Uintah County, UT

We spudded the well @ 06:30 hrs 5/11/2014 & plan on running & cementing 9-5/8" 40# N-80 LTC Surface casing to +/- 3,200' within 24hrs.

Regards,

Tony Wilkerson

Wellsite Supervisor

EP Energy / PD 406

713-997-1220 (Rig)

318-715-7602 (Cell)

THIS E-MAIL AND ANY MATERIALS TRANSMITTED WITH IT MAY CONTAIN CONFIDENTIAL OR PROPRIETARY MATERIAL FOR THE SOLE USE OF THE INTENDED RECIPIENT. ANY REVIEW, USE, DISTRIBUTION OR DISCLOSURE BY OTHERS IS STRICTLY PROHIBITED. IF YOU ARE NOT THE INTENDED RECIPIENT, OR AUTHORIZED TO RECEIVE THE INFORMATION FROM THE RECIPIENT, PLEASE NOTIFY THE SENDER BY REPLY E-MAIL AND DELETE ALL COPIES OF THIS MESSAGE.

SENE S-31 TOIS ROIE

Carol Daniels < caroldaniels@utah.gov>

EP ENERGY / ALLRED TRUST 2-31A1E / RUN & CMT 7" CSG - BOP & CSG TEST NOTIFICATION

1 message

LANDRIG009 (Precision 406) <LANDRIG009@epenergy.com> Fri, May 23, 2014 at 10:11 AM To: "alexishuefner@utah.gov" <alexishuefner@utah.gov>, "MacAfee, Bradley D" <Brad.MacAfee@epenergy.com>, "caroldaniels@utah.gov" <caroldaniels@utah.gov>, David Hackford <davidhackford@utah.gov>, "dennisingram@utah.gov" <dennisingram@utah.gov>, "Dodd, Robert W" <Robert.Dodd@epenergy.com>, "Morales, Lisa" <Lisa.Morales@epenergy.com>, "Gomez, Maria S" <Maria.Gomez@epenergy.com>, "Evans, Perry (Contractor)" <Perry.Evans@epenergy.com>, "Walt, Michael Joseph" <Michael.Walt@epenergy.com>

EP ENERGY / RUN & CMT 7" INT CSG / TEST BOPE & CSG

EP ENERGY

ALLRED TRUST 2-31A1E - FEE LEASE

API # 43047530020000

BLUEBELL FIELD

DUCHESNE COUNTY

We TD the 8 3/4" intermediate hole @ 9970' @ 6:00 AM 5-22-14. We are currently running logs and will start running 7" 29# HCP110 csg in a few hours. We anticipate starting 7" csg cement operations @ 1:00 PM 5-24-14. We also anticipate testing BOPE & 7"csg starting 2:00 AM 5-25-14. If any other information is required please contact us @ the numbers below.

Thanks,

Thanks.

Roy Derden / Morgan Harden

EP Energy / PD 406

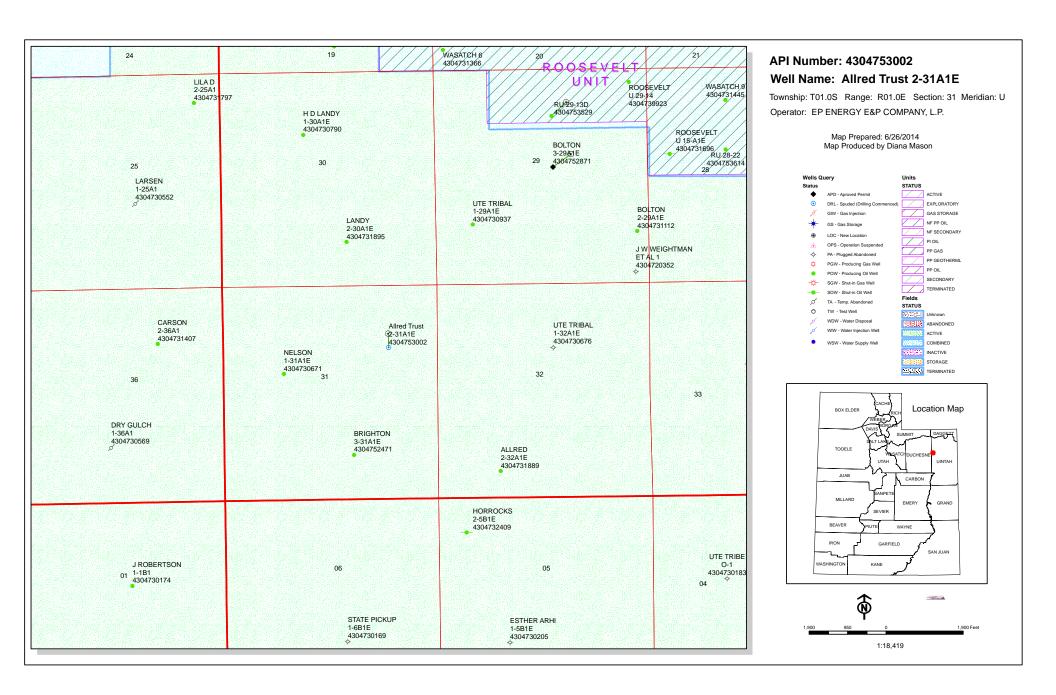
713-997-1215 (Rig)

903-229-2878 (Cell)

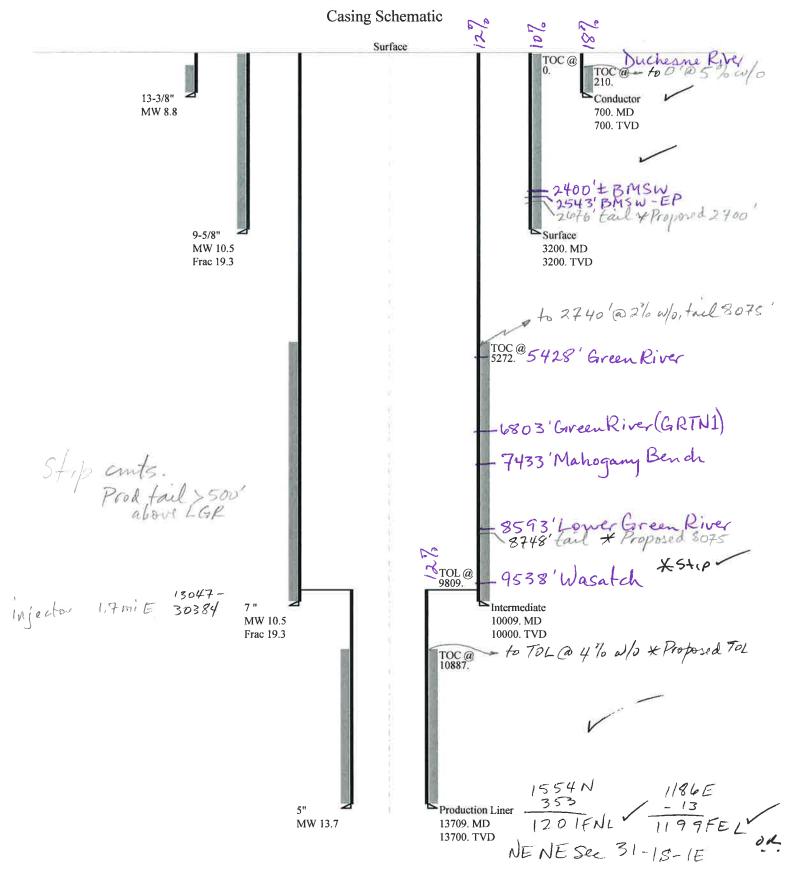
THIS E-MAIL AND ANY MATERIALS TRANSMITTED WITH IT MAY CONTAIN CONFIDENTIAL OR PROPRIETARY MATERIAL FOR THE SOLE USE OF THE INTENDED RECIPIENT. ANY REVIEW, USE, DISTRIBUTION OR DISCLOSURE BY OTHERS IS STRICTLY PROHIBITED. IF YOU ARE NOT THE INTENDED RECIPIENT, OR AUTHORIZED TO RECEIVE THE INFORMATION FROM THE RECIPIENT, PLEASE NOTIFY THE SENDER BY REPLY E-MAIL AND DELETE ALL COPIES OF THIS MESSAGE.

	CTATE OF LITAL		FORM 9
	STATE OF UTAH DEPARTMENT OF NATURAL RESOURCE	S	
	DIVISION OF OIL, GAS, AND MINI		5.LEASE DESIGNATION AND SERIAL NUMBER: Fee
SUNDR	RY NOTICES AND REPORTS O	N WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	posals to drill new wells, significantly d reenter plugged wells, or to drill horizon n for such proposals.		7.UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: Allred Trust 2-31A1E
2. NAME OF OPERATOR: EP ENERGY E&P COMPANY,	L.P.		9. API NUMBER: 43047530020000
3. ADDRESS OF OPERATOR: 1001 Louisiana, Houston,		PHONE NUMBER: 38 Ext	9. FIELD and POOL or WILDCAT: BLUEBELL
4. LOCATION OF WELL FOOTAGES AT SURFACE: 1554 FNL 1186 FEL			COUNTY: UINTAH
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 11 Township: 01.0S Range: 01.0E Meridia	ın: U	STATE: UTAH
11. CHEC	K APPROPRIATE BOXES TO INDICATE	E NATURE OF NOTICE, REPOR	RT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
	ACIDIZE [ALTER CASING	CASING REPAIR
NOTICE OF INTENT Approximate date work will start:	✓ CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME
5/5/2014	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE
SUBSEQUENT REPORT	DEEDEN [FRACTURE TREAT	NEW CONSTRUCTION
Date of Work Completion:	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK
SPUD REPORT	PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION
Date of Spud:	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	☐ TEMPORARY ABANDON
_	L TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL
DRILLING REPORT Report Date:	WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION
	WILDCAT WELL DETERMINATION	OTHER	OTHER:
12. DESCRIBE PROPOSED OR	COMPLETED OPERATIONS. Clearly show al	l pertinent details including dates, o	depths, volumes, etc.
Please see	attached. Changing to directi		proved by the
			th Division of Gas and Mining
			ly 30, 2014
		Date: Out	19 30, 2014
		Ву:	lot K Dunt
		Please Rev	iew Attached Conditions of Approval
NAME (DI EACE DOINT)	DUONE NUMBE	р тіті c	
NAME (PLEASE PRINT) Maria S. Gomez	PHONE NUMBE 713 997-5038	R TITLE Principal Regulatory Analys	st
SIGNATURE N/A		DATE 6/4/2014	

The Utah Division of Oil, Gas, and Mining


- State of Utah
- Department of Natural Resources

Electronic Permitting System - Sundry Notices


Sundry Conditions of Approval Well Number 43047530020000

Cement volume for the 7" intermediate string shall be determined from actual hole diameter in order to place cement from the pipe setting depth back to 2740' MD and tail cement back to 8075' MD as indicated in the submitted drilling plan.

RECEIVED: Jul. 30, 2014

43047530020000 Allred Trust 2-31A1Erev

Well name:

43047530020000 Allred Trust 2-31A1Erev

Operator:

EP ENERGY E&P COMPANY, L.P.

Project ID:

String type:

Conductor

Design is based on evacuated pipe.

43-047-53002

Location:

UINTAH COUNTY

Design parameters:

Collapse Mud weight:

8.800 ppg

Minimum design factors: Collapse: Design factor

Environment:

H2S considered?

No 74 °F

1.125

Surface temperature: Bottom hole temperature: Temperature gradient:

Non-directional string.

84 °F 1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Design factor

1.00

Cement top:

210 ft

Burst

Max anticipated surface

pressure:

236 psi 0.120 psi/ft

Internal gradient: Calculated BHP

No backup mud specified.

320 psi

Buttress: Premium:

Tension:

8 Round STC:

8 Round LTC:

Body yield:

1.60 (J) 1.50 (J)

1.80 (J)

1.70 (J)

1.50 (B)

Tension is based on buoyed weight. Neutral point: 609 ft

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (lbs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	Est. Cost (\$)
1	700	13.375	54.50	J-55	ST&C	700	700	12.49	8686
Run Seq	Collapse Load (psi)	Collapse Strength (psi)	Collapse Design Factor	Burst Load (psi)	Burst Strength (psi)	Burst Design Factor	Tension Load (kips)	Tension Strength (kips)	Tension Design Factor
1	320	1130	3.531	``32Ó	2730	8.53	33.2	`514´	15.49 J

Prepared

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Phone: 801 538-5357

FAX: 801-359-3940

Date: July 28,2014 Salt Lake City, Utah

Collapse is based on a vertical depth of 700 ft, a mud weight of 8.8 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name:

43047530020000 Allred Trust 2-31A1Erev

Operator:

EP ENERGY E&P COMPANY, L.P.

String type:

Design parameters:

Mud weight:

Surface

Design is based on evacuated pipe.

Project ID: 43-047-53002

Location:

Collapse

UINTAH COUNTY

Minimum design factors:

Collapse: Design factor

1.125

Environment: H2S considered?

No Surface temperature: 74 °F 119 °F Bottom hole temperature:

Temperature gradient: 1.40 °F/100ft

Minimum section length: 100 ft

Burst:

Design factor

1.00

1.80 (J)

1.70 (J)

1.60 (J)

2,700 ft

Cement top:

Surface

Burst

Max anticipated surface

No backup mud specified.

pressure:

2,816 psi

10.500 ppg

Internal gradient: Calculated BHP

0.120 psi/ft

3,200 psi

Tension:

8 Round STC:

8 Round LTC: Buttress:

Premium:

Neutral point:

1.50 (J) Body yield: 1.50 (B) Tension is based on buoyed weight.

Re subsequent strings:

Non-directional string.

Next setting depth: 10,000 ft

Next mud weight: 10.500 ppg Next setting BHP: 5,454 psi Fracture mud wt: 19.250 ppg Fracture depth: 3,200 ft

Injection pressure:

3,200 psi

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (Ibs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	Est. Cost (\$)	
1	3200	9.625	40.00	N-80	LT&C	3200	3200	8.75	40719	
Run Seq	Collapse Load (psi) 1745	Collapse Strength (psi) 3090	Collapse Design Factor 1.770	Burst Load (psi) 3200	Burst Strength (psi) 5750	Burst Design Factor 1.80	Tension Load (kips) 108	Tension Strength (kips) 737	Tension Design Factor 6.82 J	

Prepared

by:

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357

FAX: 801-359-3940

Date: July 28,2014 Salt Lake City, Utah

Collapse is based on a vertical depth of 3200 ft, a mud weight of 10.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name:

43047530020000 Allred Trust 2-31A1Erev

Operator:

EP ENERGY E&P COMPANY, L.P.

Project ID:

String type:

Intermediate

43-047-53002

Location:

UINTAH COUNTY

Design parameters: Collapse		Minimum design Collapse:	factors:	Environment: H2S considered?	No
Mud weight:	10.500 ppg	Design factor	1.125	Surface temperature:	74 °F
Design is based on evac	uated pipe.	-		Bottom hole temperature	e: 214 °F
-	• •			Temperature gradient:	1.40 °F/100ft
				Minimum section length:	: 1,000 ft
		Burst:		•	
		Design factor	1.00	Cement top:	5,272 ft
Burst				-	,
Max anticipated surface					
pressure:	6,741 psi				
Internal gradient:	0.220 psi/ft	Tension:		Directional Info - Build	& Drop
Calculated BHP	8,940 psi	8 Round STC:	1.80 (J)	Kick-off point	3250 ft

No backup mud specified.

8 Round STC: 1.80 (J) 1.80 (J) 1.60 (J) 8 Round LTC: Buttress: 1.50 (J) Premium: Body yield:

1.60 (B)

Tension is based on air weight. Neutral point: 8,418 ft

3250 ft Kick-off point Departure at shoe: 354 ft 1.5 °/100ft .01 ° Maximum dogleg: Inclination at shoe:

Re subsequent strings: Next setting depth:

13,709 ft Next mud weight: 13.700 ppg Next setting BHP: 9,757 psi Fracture mud wt: 19.250 ppg Fracture depth: 10,009 ft Injection pressure: 10,009 psi

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (lbs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	Est. Cost (\$)	
1	10009	7	29.00	HCP-110	LT&C	10000	10009	6.059	113028	
Run Seq	Collapse Load (psi) 5454	Collapse Strength (psi) 9148	Collapse Design Factor 1.677	Burst Load (psi) 8940	Burst Strength (psi) 11220	Burst Design Factor 1.25	Tension Load (kips) 290	Tension Strength (kips) 797	Tension Design Factor 2.75 J	

Prepared

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: July 28,2014 Salt Lake City, Utah

Collapse is based on a vertical depth of 10000 ft, a mud weight of 10.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Well name:

43047530020000 Allred Trust 2-31A1Erev

Operator:

EP ENERGY E&P COMPANY, L.P.

String type:

Production Liner

Project ID:

43-047-53002

Location:

UINTAH COUNTY

Minimum design factors: **Environment:**

Collapse

Mud weight: Internal fluid density:

Design parameters:

13.700 ppg 2.330 ppg Collapse: Design factor

1.125

H2S considered?

No Surface temperature: 74 °F Bottom hole temperature: 266 °F

Temperature gradient: 1.40 °F/100ft Minimum section length: 1,000 ft

Burst:

Design factor

1.00 Cement top: 10,887 ft

Burst

Max anticipated surface pressure: Internal gradient:

Calculated BHP

No backup mud specified.

6,736 psi 0.220 psi/ft 9,750 psi

Tension:

8 Round STC: 1.80 (J) 8 Round LTC: 1.80 (J) 1.60 (J) Buttress: 1.50 (J) Kick-off point Departure at shoe:

Liner top:

Directional Info - Build & Drop 3250 ft 354 ft

9.809 ft

Premium: Body yield:

1.60 (B)

Maximum dogleg: 1.5 °/100ft 0° Inclination at shoe:

Tension is based on air weight.

Neutral point:

12,894 ft

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (lbs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	Est. Cost (\$)
1	3909	` 5	18.00	HCP-110	ST-L	13700	13709	4.151	309593
Run Seq	Collapse Load (psi)	Collapse Strength (psi)	Collapse Design Factor	Burst Load (psi)	Burst Strength (psi)	Burst Design Factor	Tension Load (kips)	Tension Strength (kips)	Tension Design Factor
1	8092	15360	1 898	9750	13940	1 43	70.4	341	4 85 .1

Prepared

by:

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: July 28,2014 Salt Lake City, Utah

For this liner string, the top is rounded to the nearest 100 ft. Collapse is based on a vertical depth of 13700 ft, a mud weight of 13.7 ppg An Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

String 3 String 4 String 4 String 4 13700 3200 10000 10000 13940 10000 10000 10000 11200 Octed Pressure Be Held At Previous String and Setting Casing and Setting Ca	BOPE REVIEW			EP Energy	Allred	Trust 2-31A1rev	v API 43-047-53002-0000	
String 1 String 2 String 3 String 2 String 3 String 3 String 3 String 3 String 4 String 4 String 4 String 4 String 4 String 6 String 6 String 6 String 6 String 6 String 6 String 7 String 6 String 7 String 6 String 6 String 6 String 6 String 6 String 7 String 6 String 7 String 7 String 6 String 6 String 7	MAIN NICES						1	
String 1 String 2 String 2 String 2	מבו ועסווים		Signal in the second se	red I rust 2-31A		-53002-0000		
String 1	; ;			String 2	String	String 4		
String 1 13 3/8	Casing Size (")		13 3/		7	သ		
String 1	Setting Depth (TVD)		701					
String 1	Previous Shoe Setting Depth (TVL	(Q						
1000 1000	Max Mud Weight (ppg)							
String 1	BOPE Proposed (psi)		1001					
String 1	Casing Internal Yield (psi)		273					
String 1 13 3/8	Operators Max Anticipated Pressu	ure (psi)	926	O		13.7 pl	bd	П
BOPE Adequate 328 BOPE Adequate BHP-(0.12*Setting Depth) = 174 YES	Calculations	String	13.3%					
BOPE Adequate	May BHP Insil		300					
POPE Adequate Pope Adequate	Fied I I I wan		35,					
String Depth = 744 YES	MACD (Coc) facil	Mex. BUD 70*0**********************************		_	ate For Drilling	And Setting Casir	ng at Depth?	
Previous Shoe Depth = 174 YES	MACO (Gas) [psi]	Max BHP-(U.12"Setting Deptn) =	47		4.5" by 20" roti	ating head		
Can Full Experience Can Full Experience	MASP (Gas/Mud) [psi]	Max BHP-(U.22"Setting Depth) =	1/1				ok Ok	
String 2 95/8 " 170 psi psi 170 psi ps	-1			_	sected Pressure	Be Held At Previo	ons Shoe?	
String 2 9.5/8 "	Pressure At Previous Shoe	(Setting Depth - Previous Shoe Depth)	17.	- 1				
String 2 9 5/8 " 1564	Required Casing/BOPE Test Pre	essure	70() psi				
String 2 9 6/8 " .052*Setting Depth = BHP-(0.12*Setting Depth) = BHP-(0.22*Setting Depth) = BEOPE Adequat 1180 NO	*Max Pressure Allowed @ Previo	ious Casing Shoe =	,) psi	*Assumes 1ps	/ft frac gradient		
String 2 9 6/8 " .052*Setting Depth Horolog Depth Horolog BHP-(0.12*Setting Depth) Horolog BHP-(0.22*Setting Depth) Horolog Btring 3 1180 NO								П
1564 BOPE Adequate BOPE	Calculations	String 2	3/9 6	- -				
BOPE Adequate BOPE Adequate	Max BHP [psi]	_	156	†				
String 4					ate For Drilling	And Setting Casir	ng at Depth?	
## Conting Depth Bell	MASP (Gas) [psi]	Max BHP-(0.12*Setting Depth) =	118(_	4.5" x 13.375",	diverter stack with	rotating head	
Can Full Experious Shoe Depth 1014 NO	MASP (Gas/Mud) [psi]	Max BHP-(0.22*Setting Depth) =	98	_				
String 3				_	ected Pressure	Be Held At Previo	ous Shoe?	
String 3	Pressure At Previous Shoe	HP22*(Setting Depth - Previous Shoe Depth) =	101					
String 3	Required Casing/BOPE est Pre	essure	320(lsd (ĺ			
String 3	"Max Pressure Allowed @ Previo	ous casing shoe =	70/	lpsi	*Assumes 1ps	/ft frac gradient		
String Depth*MW	Calculations	String 3	7					Г
BOPE Adequate	Max BHP [psi]		5512	2	1			
String A A A A A					ate For Drilling	And Setting Casir	ng at Depth?	Π
Can Full Expension	MASP (Gas) [psi]	Max BHP-(0.12*Setting Depth) =	4312	_	10M BOP stack	c w/rotating head, s	spacer spool, 5M annular, dbl rams,	
*Can Full Experiments *Can	MASP (Gas/Mud) [psi]	Max BHP-(0.22*Setting Depth) =	3312		& single w/flex	ram, mud cross		
A- Previous Shoe Depth = 4016 NO 7854 psi 3200				*Can Full Exp	ected Pressure	Be Held At Previo	ous Shoe?	
7854 psi 3200 psi 320		(Setting Depth - Previous Shoe Depth)	4016		Reasonable			
3200 psi	Required Casing/BOPE Test Pre	essure	785	1 psi				
String 4	*Max Pressure Allowed @ Previc	ous Casing Shoe =	320() psi	*Assumes 1psi	/ft frac gradient		\neg
.052*Setting Depth*MW = 9617 BOPE Adequat 3HP-(0.12*Setting Depth) = 7973 YES 3HP-(0.22*Setting Depth) = 6603 YES *Can Full Experiments Shoe Depth) = 8803 YES 10000 psi	Calculations	String 4	9	=				Г
BOPE Adequat	Max BHP fosil	1= WW*Mva Depth*MW = 1	9617	1 2	3			
3HP-(0.12*Setting Depth) = 7973 YES 3HP-(0.22*Setting Depth) = 6603 YES 3HP-(0.22*Setting Depth) = 6603 YES 4Can Full Expe 603 YES 603 YES 604 PEN FOR	7			-	ate For Drilling	And Setting Casin	at Denth?	
3HP-(0.22*Setting Depth) = 6603 YES *Can Full Expe h - Previous Shoe Depth) = 8803 YES 9758 psi 10000 psi	MASP (Gas) [psi]	Max BHP-(0.12*Setting Depth) =	797		10M BOP stack	w/rotating head, s	spacer spool, 5M annular, dbl rams.	Ī
h - Previous Shoe Depth) = 8803 9758	MASP (Gas/Mud) [psi]	Max BHP-(0.22*Setting Depth) =	5099		& single w/flex	ram, mud cross		
h - Previous Shoe Depth) = 8803 9758					ected Pressure	Be Held At Previo	ous Shoe?	
9758 psi 10000 psi		(Setting Depth - Previous Sh	8803	3 YES			OK	
isa 100001	Required Casing/BOPE Test Pre-		9758	3 psi				Γ
	*Max Pressure Allowed @ Previo	ous Casing Shoe =	10000	isi	-*Assumes 1nsi	If from gradiant		

	STATE OF UTAH		FORM 9		
	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING	i	5.LEASE DESIGNATION AND SERIAL NUMBER: Fee		
SUNDR	RY NOTICES AND REPORTS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:		
	oposals to drill new wells, significantly deep reenter plugged wells, or to drill horizontal l n for such proposals.		7.UNIT or CA AGREEMENT NAME:		
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: Allred Trust 2-31A1E		
2. NAME OF OPERATOR: EP ENERGY E&P COMPANY,	L.P.		9. API NUMBER: 43047530020000		
3. ADDRESS OF OPERATOR: 1001 Louisiana, Houston,		NE NUMBER: Ext	9. FIELD and POOL or WILDCAT: BLUEBELL		
4. LOCATION OF WELL FOOTAGES AT SURFACE: 1569 FNL 1113 FEL			COUNTY: UINTAH		
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 1 Township: 01.0S Range: 01.0E Meridian: U	J	STATE: UTAH		
11. CHEC	K APPROPRIATE BOXES TO INDICATE NA	ATURE OF NOTICE, REPOR	T, OR OTHER DATA		
TYPE OF SUBMISSION		TYPE OF ACTION			
7	ACIDIZE A	LTER CASING	CASING REPAIR		
Approximate date work will start:	✓ CHANGE TO PREVIOUS PLANS	HANGE TUBING	CHANGE WELL NAME		
5/5/2014	CHANGE WELL STATUS	OMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE		
SUBSEQUENT REPORT	DEEPEN F	RACTURE TREAT	NEW CONSTRUCTION		
Date of Work Completion:	OPERATOR CHANGE P	LUG AND ABANDON	PLUG BACK		
		ECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION		
SPUD REPORT Date of Spud:					
		IDETRACK TO REPAIR WELL	L TEMPORARY ABANDON		
		ENT OR FLARE	WATER DISPOSAL		
DRILLING REPORT Report Date:	☐ WATER SHUTOFF ☐ S	I TA STATUS EXTENSION	APD EXTENSION		
	WILDCAT WELL DETERMINATION	THER	OTHER:		
	COMPLETED OPERATIONS. Clearly show all per Changing well from vertical to d				
Maria S. Gomez	713 997-5038	Principal Regulatory Analys	t		
SIGNATURE N/A		DATE 4/30/2014			

Allred Trust 2-31A1E Sec. 31, T1S, R1E UINTAH COUNTY, UT

EP ENERGY E&P COMPANY, L.P.

DRILLING PROGRAM

1. Estimated Tops of Important Geologic Markers

<u>Formation</u>	<u>Depth</u>
Green River (GRRV)	5,428' TVD
Green River (GRTN1)	6,803' TVD
Mahogany Bench	7,433' TVD
L. Green River	8,593' TVD
Wasatch	9,538' TVD
T.D. (Permit)	13,700' TVD

2. Estimated Depths of Anticipated Water, Oil, Gas or Mineral Formations:

Substance	<u>Formation</u>	<u>Depth</u>
	Green River (GRRV) Green River (GRTN1) Mahogany Bench	5,431' MD / 5,428' TVD 6,808' MD / 6,803' TVD 7,439' MD / 7,433' TVD
Oil	L. Green River	8,601' MD / 8,593' TVD
Oil	Wasatch	9,547' MD / 9,538' TVD

3. Pressure Control Equipment: (Schematic Attached)

A 4.5" by 20.0" rotating head on structural pipe from surface to 700' MD/TVD. A 4.5" by 13-3/8" Diverter Stack w/ Rotating Head from 700' MD/TVD to 3,200' MD/TVD on Conductor. A 10M BOP stack w/ rotating head, spacer spool, 5M annular, flex rams, blind rams & single w/ flex rams from 3,200' MD/TVD to 10,009' MD / 10,000' TVD. A 10M BOP stack w/ rotating head, spacer spool, 5M annular, flex rams, blind rams & single w/ flex rams from 10,009' MD / 10,000' TVD to TD (13,709' MD / 13,700' TVD).

The BOPE and related equipment will meet the requirements of the 5M and 10M system.

OPERATORS MINIMUM SPECIFICATIONS FOR BOPE:

The surface casing will be equipped with a flanged casing head of 5M psi working pressure. An 11" 5M x 11" 10M spool, 11" x 10M psi BOP and 5M psi annular will be nippled up on the surface casing and tested to 250 psi low test / 3,000 psi high test for 10 minutes each prior to drilling out. The surface casing

will be tested to 1,000 psi. for 30 mins. Intermediate casing will be tested to the greater of 1,500 psi or 0.22 psi/ft. The choke manifold equipment, upper Kelly cock and floor safety valves will be tested to 5M psi. The annular preventer will be tested to 250 psi low test / 4,000 psi high test. The 10M BOP will be installed with rotating head, spacer spool, 5M annular, flex rams, blind rams & single w/ flex rams from surface shoe to TD. The BOPE will be hydraulically operated.

In addition, the BOP equipment will be tested after running intermediate casing, after any repairs to the equipment and at least once every 30 days. Pipe and blind rams will be activated on each trip, annular preventer will be activated weekly and weekly BOP drills will be held with each crew.

Statement on Accumulator System and Location of Hydraulic Controls:

Precision Rig # 406 is expected to be used to drill the proposed well. Operations will commence after approval of this application. Manual and/or hydraulic controls will be in compliance with 5M and 10M psi systems.

Auxiliary Equipment:

- A) Pason Gas Monitoring 700' TD
- B) Mud logger with gas monitor 3,200' to TD (13,700' TVD)
- C) Choke manifold with one manual and one hydraulic operated choke
- D) Full opening floor valve with drill pipe thread
- E) Upper and lower Kelly cock
- F) Shaker, de-sander and centrifuge

4. Proposed Casing & Cementing Program:

Please refer to the attached Wellbore Diagram.

All casing will meet or exceed the following design safety factors:

- Burst = 1.00
- Collapse = 1.125
- Tension = 1.2 (including 100k# overpull)

Cement design calculations for intermediate and production hole will be based on minimum 10% excess over gauge hole volumes. Actual volumes pumped will be a minimum of 10% excess over caliper volume to designed tops of cement for any section logged. A minimum of 50% excess over gauge volume will be pumped on surface casing.

5. **Drilling Fluids Program:**

Proposed Mud Program:

Interval	Type	Mud Weight
Surface	WBM	9.0 – 10.5
Intermediate	WBM	9.5 – 10.5
Production	WBM	11.0 – 13.7

Anticipated mud weights are based on actual offset well bottom-hole pressure data. Mud weights utilized may be somewhat higher to allow for trip margin and to provide hole stability for running logs and casing.

Visual mud monitoring equipment will be utilized.

6. **Evaluation Program**:

Logs:

Mud Log: 3,200' MD/TVD – TD (13,700' TVD)

Open Hole Logs: Gamma Ray, Neutron-Density, Resistivity, Sonic, from surface

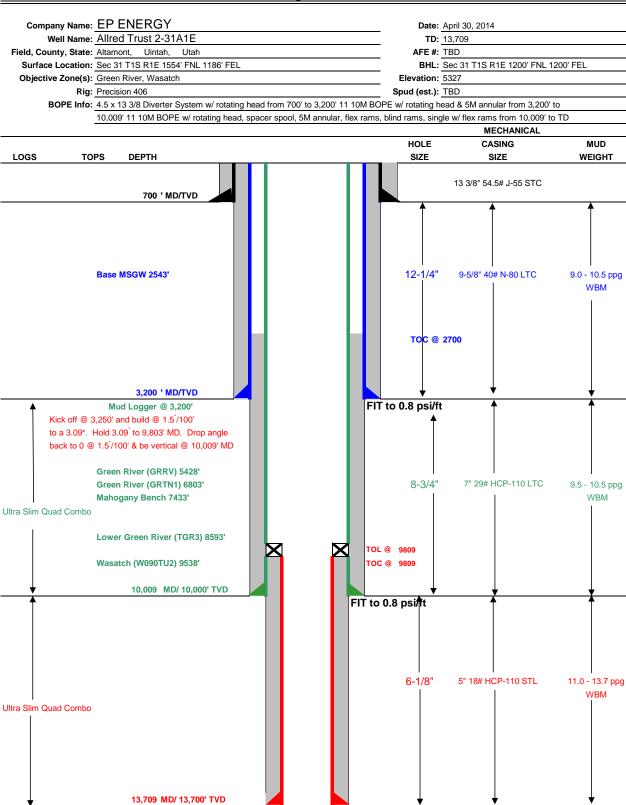
casing shoe to TD.

7. Abnormal Conditions:

Maximum anticipated bottomhole pressure calculated at 13,700' TVD equals approximately 9,760 psi. This is calculated based on a 0.7124 psi/ft gradient (13.7 ppg mud density at TD).

Maximum anticipated surface pressure equals approximately 6,746 psi (bottomhole pressure minus the pressure of a partially evacuated hole calculated at 0.22 psi/ft).

Maximum anticipated surface pressure based on frac gradient at 7" casing shoe is 0.8 psi/ft at 10,000' TVD = 8,000 psi


BOPE and casing design will be based on the lesser of the two MASPs which is 6,746 psi.

8. OPERATOR REQUESTS THAT THE PROPOSED WELL BE PLACED ON CONFIDENTIAL STATUS.

Page 1/2

Drilling Schematic

Page 2/2

DRILLING PROGRAM

CASING PROGRAM	SIZE	INTERVAL		WT.	GR.	CPLG.	BURST	COLLAPSE	TENSION
CONDUCTOR	13 3/8"	0	700	54.5	J-55	STC	2,740	1,130	514
SURFACE	9-5/8"	0	3200	40.00	N-80	LTC	5,750	3,090	737
INTERMEDIATE	7"	0	10009	29.00	HCP-110	LTC	11,220	9,750	797
PRODUCTION LINER	5"	9809	13709	18.00	HCP-110	STL	13,940	15,450	495

CEMENT PROGRA	M	FT. OF FILL	DESCRIPTION	SACKS	EXCESS	WEIGHT	YIELD
CONDUCTOR		700	Class G + 3% CACL2	879	100%	15.8 ppg	1.15
STIDEACE	Lead	2,700	EXTENDACEM SYSTEM: Type V Cement + 5 lbm/sk Silicalite Compacted + 0.25 lbm/sk Kwik Seal + 0.125 lbm/sk Poly- E-Flake + 2% Bentonite	427	75%	11.0 ppg	3.16
SURFACE	Tail	500	HALCEM SYSTEM: Class G Cement + 3 lbm/sk Silicalite Compacted + 1% Salt + 0.3% Econolite + 0.25 lbm/sk Poly-E-Flake + 0.25 lbm/sk Kwik Seal + 0.5% HR-5	194	50%	14.3 ppg	1.31
INTERMEDIATE	Lead	5,409	EXPANDACEM SYSTEM: 6% Bentonite + 0.2% Econolite + 0.3% Versaset + 0.7% HR-5 + 0.3% Super CBL + 0.2% Halad(R)-322 + 0.125 lbm/sk Poly-E-Flake	467	10%	12.5 ppg	1.91
	Tail	1,900	BONDCEM SYSTEM: Class G Cement + 4% Bentonite + 0.25 Poly-E-Flake + 0.1% Halad-413 + 5 lb/sk Silicalite Compacted + 0.15% SA-1015 + 0.5% HR-5	196	10%	13.0 ppg	1.65
PRODUCTION LINER		3,900	EXTENDACEM SYSTEM: Class G Cement + 0.3% Super CBL + 0.6% SCR- 100 + 0.3% Halad-413 + 0.125 lbm/sk Poly-E-Flake + 3 lbm/sk Silicalite Compacted + 20% SSA-1 + 0.1% SA- 1015	231	25%	14.20	1.47

FLOAT EQUIPMENT & CENTRALIZERS							
CONDUCTOR	PDC drillable guide shoe, 1 joint, PDC drillable float collar. Thread lock all float equipment. Install bow						
CONDUCTOR	spring centralizers on the bottom 3 joints of casing.						
SURFACE	PDC drillable guide shoe, 1 joint casing, PDC drillable float collar & Stage collar. Thread lock all float						
SURFACE	equipment. Install bow spring centralizers on the bottom 3 joints of casing & every 3rd joint thereafter.						
INTERMEDIATE	PDC drillable 10M,P-110 float shoe, 1 joint, PDC drillable 10M, P-110 float collar. Thread lock all float						
INTERMEDIATE	equipment. Maker joint at 8,500'.						
LINER	Float shoe, 1 joint, float collar, 1 joint, landing collar. Thread lock all FE. Maker joints every 1000'.						

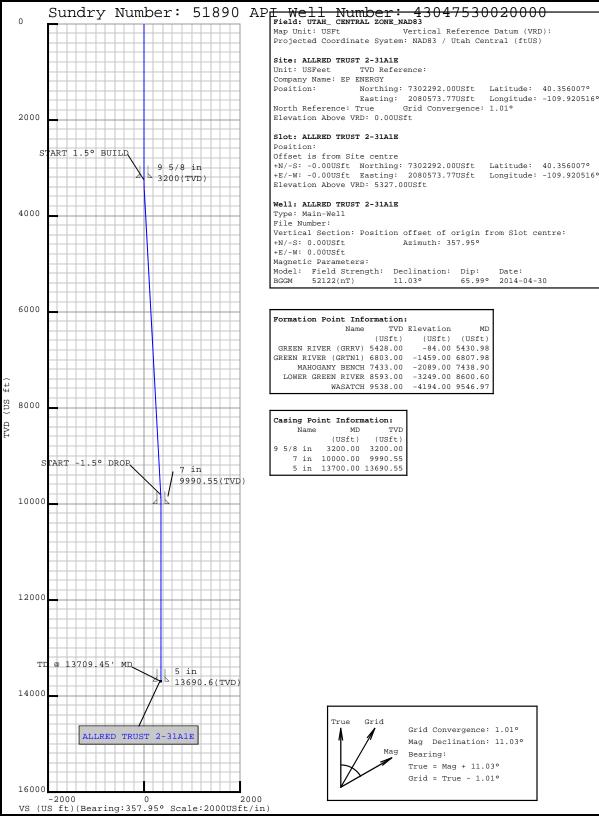
PROJECT ENGINEER(S):	Brad MacAfee	713-997-6383	
MANAGER:	Bob Dodd		

1

5D Plan Report

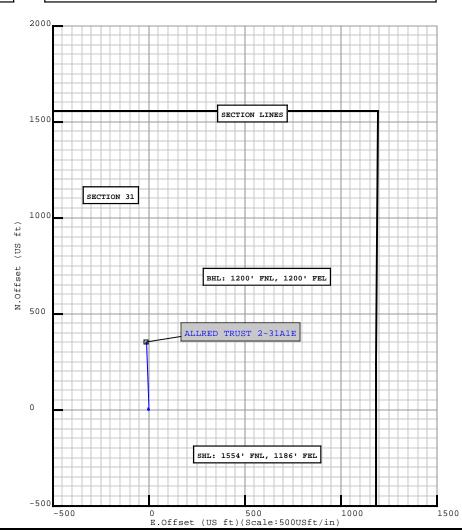
5D Plan Report

EP ENERGY


Field Name: UTAH_ CENTRAL ZONE_NAD83

Site Name: ALLRED TRUST 2-31A1E
Well Name: ALLRED TRUST 2-31A1E

Plan: PLAN 1


Weatherford International Limited 5D 7.5.7: 30 April 2014, 16:41:40 UTC


```
Plan Point Information:
DogLeg Severity Unit: 0/100.00ft
                               Position offsets from Slot centre
    MD Inc Az
                    TVD +N/-S +E/-W VSec DLS Toolface Build Turn
 (USft) (°)
              (°)
                   (USft) (USft) (USft) (USft) (DLSU)
                                                       (°) (DLSU) (DLSU)
  0.00 0.00 0.00
                   0.00 0.00 0.00 0.00 0.00
                                                       0.0 0.00 0.00
3250.00 0.00 0.00 3250.00 0.00 0.00 0.00 0.00
                                                      0.0 0.00
3456.22 3.09 357.95 3456.12 5.56 -0.20 5.57 1.50
                                                     357.9 1.50
                                                                 0.00
9803.23 3.09 357.95 9793.88 347.85 -12.46 348.07 0.00
                                                      0.0
                                                           0.00
                                                                  0.00
10009.45 0.00 0.00 10000.01 353.41 -12.66 353.64 1.50
                                                     180.0 -1.50
                                                                  0.00
13709.45 0.00 0.00 13700.00 353.41 -12.66 353.63 0.00
                                                       0.0 0.00
```


5D Plan Report

Well Name

Plan Surveys for the ALLRED TRUST 2-31A1E

Units: US ft North Reference: True Convergence Angle: 1.01

Site Name Easting: 2080573.77 US ft Longitude: -109.920516

ALLRED TRUST 2-31A1E **Elevation above**:5327.00 US ft

Comment:

Position (Offsets relative to Site Centre)

ALLRED TRUST 2-31A1E

Slot TVD Reference: Ground Elevation

Elevation above: 5327.00 US ft

Comment :

Type: Main well UWI: Plan: PLAN 1

Rig Height *Drill Floor*: 17.00 US ft **Comment**:

Relative to: 5344.00 US ft

Closure Distance: 353.634 US ft Closure Azimuth: 357.948°

ALLRED TRUST 2-31A1E Vertical Section (Position of Origin Relative to Slot)

+N / -S : 0.00 US ft **+E / -W :** 0.00 US ft **Az :**357.95°

Magnetic Parameters

Model: BGGM **Field Strength**: 52122.7nT **Dec**: 11.03° **Dip**: 65.99° **Date**: 30/Apr/2014

Weatherford International Limited 5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Target Set

Name: ALLRED TRUST 2-31A1E

Number of Targets: 1

Comment:

TargetName:
PBHL

+N / -S : 353.41US ft **+E / -W :** -12.66 US ft

Position (Relative to centre)
Northing: 7302645.13 US ft
Easting: 2080554.87US ft

Latitude: 40°21'25.118180" Longitude: -109°55'14.021550"

Shape: Cuboid

TVD (Drill Floor) : 13700.00 US ft

Orientation Dimensions Azimuth: 0.00°

Inclination: 0.00°

Breadth: 20.00 US ft

Height: 20.00 US ft

Length: 20.00 US ft

Casing Points (Re	elative to centre,	TVD relative to	Drill Floor)					
Name	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°)	Longitude (°)
9 5/8 in	3200.00	0.00	0.00	3200.00	0.00	0.00	40.356007	-109.920516
7 in	10000.00	0.14	357.95	9990.55	353.40	-12.66	40.356977	-109.920562
5 in	13700.00	0.00	0.00	13690.55	353.41	-12.66	40.356977	-109.920562

Well path created using minimum curvature

Salient Points	(Relative to	centre, TVD	relative to	Drill Floor)							
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°)	Longitude (°)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	40.356007	-109.920516	0.00	0.00	0.00	
3200.00	0.00	0.00	3200.00	0.00	0.00	40.356007	-109.920516	0.00	0.00	0.00	9 5/8 in
3250.00	0.00	0.00	3250.00	0.00	0.00	40.356007	-109.920516	0.00	0.00	0.00	START 1.5° BUILD
3456.22	3.09	357.95	3456.12	5.56	-0.20	40.356022	-109.920517	1.50	357.95	5.57	
5430.98	3.09	357.95	5428.00	112.06	-4.01	40.356315	-109.920531	0.00	0.00	112.13	GREEN RIVER (GRRV):
6807.98	3.09	357.95	6803.00	186.32	-6.67	40.356519	-109.920540	0.00	0.00	186.44	GREEN RIVER (GRTN1):
7438.90	3.09	357.95	7433.00	220.34	-7.89	40.356612	-109.920544	0.00	0.00	220.48	MAHOGANY BENCH:

Weatherford International Limited

5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Salient Points	(Relative to	centre, TVD	relative to	Drill Floor)							
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°)	Longitude (°)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
8600.60	3.09	357.95	8593.00	282.99	-10.14	40.356784	-109.920552	0.00	0.00	283.17	LOWER GREEN RIVER :
9546.97	3.09	357.95	9538.00	334.03	-11.97	40.356924	-109.920559	0.00	0.00	334.24	WASATCH:
9803.23	3.09	357.95	9793.88	347.85	-12.46	40.356962	-109.920561	0.00	0.00	348.07	START -1.5° DROP
10000.00	0.14	357.95	9990.55	353.40	-12.66	40.356977	-109.920562	1.50	180.00	353.63	7 in
10009.45	0.00	0.00	10000.01	353.41	-12.66	40.356977	-109.920562	1.50	180.00	353.64	
13700.00	0.00	0.00	13690.55	353.41	-12.66	40.356977	-109.920562	0.00	0.00	353.64	5 in
13709.45	0.00	0.00	13700.00	353.41	-12.66	40.356977	-109.920562	0.00	0.00	353.63	TD @ 13709.45' MD

Interpolated Poi	nts (Relative to	centre, TVD re	elative to Drill Fl	oor)					
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	
1000.00	0.00	0.00	1000.00	0.00	0.00	0.00	0.00	0.00	
1100.00	0.00	0.00	1100.00	0.00	0.00	0.00	0.00	0.00	
1200.00	0.00	0.00	1200.00	0.00	0.00	0.00	0.00	0.00	
1300.00	0.00	0.00	1300.00	0.00	0.00	0.00	0.00	0.00	
1400.00	0.00	0.00	1400.00	0.00	0.00	0.00	0.00	0.00	
1500.00	0.00	0.00	1500.00	0.00	0.00	0.00	0.00	0.00	
1600.00	0.00	0.00	1600.00	0.00	0.00	0.00	0.00	0.00	
1700.00	0.00	0.00	1700.00	0.00	0.00	0.00	0.00	0.00	
1800.00	0.00	0.00	1800.00	0.00	0.00	0.00	0.00	0.00	
1900.00	0.00	0.00	1900.00	0.00	0.00	0.00	0.00	0.00	

Weatherford International Limited

5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Interpolated Poi	nts (Relative to	centre, TVD re	elative to Drill Fl	oor)					
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
2000.00	0.00	0.00	2000.00	0.00	0.00	0.00	0.00	0.00	
2100.00	0.00	0.00	2100.00	0.00	0.00	0.00	0.00	0.00	
2200.00	0.00	0.00	2200.00	0.00	0.00	0.00	0.00	0.00	
2300.00	0.00	0.00	2300.00	0.00	0.00	0.00	0.00	0.00	
2400.00	0.00	0.00	2400.00	0.00	0.00	0.00	0.00	0.00	
2500.00	0.00	0.00	2500.00	0.00	0.00	0.00	0.00	0.00	
2600.00	0.00	0.00	2600.00	0.00	0.00	0.00	0.00	0.00	
2700.00	0.00	0.00	2700.00	0.00	0.00	0.00	0.00	0.00	
2800.00	0.00	0.00	2800.00	0.00	0.00	0.00	0.00	0.00	
2900.00	0.00	0.00	2900.00	0.00	0.00	0.00	0.00	0.00	
3000.00	0.00	0.00	3000.00	0.00	0.00	0.00	0.00	0.00	
3100.00	0.00	0.00	3100.00	0.00	0.00	0.00	0.00	0.00	
3200.00	0.00	0.00	3200.00	0.00	0.00	0.00	0.00	0.00	9 5/8 in
3250.00	0.00	0.00	3250.00	0.00	0.00	0.00	0.00	0.00	START 1.5° BUILD
3300.00	0.75	357.95	3300.00	0.33	-0.01	1.50	357.95	0.33	
3400.00	2.25	357.95	3399.96	2.94	-0.11	1.50	0.00	2.94	
3456.22	3.09	357.95	3456.12	5.56	-0.20	1.50	0.00	5.57	
3500.00	3.09	357.95	3499.84	7.92	-0.28	0.00	0.00	7.93	
3600.00	3.09	357.95	3599.69	13.32	-0.48	0.00	0.00	13.32	
3700.00	3.09	357.95	3699.54	18.71	-0.67	0.00	0.00	18.72	
3800.00	3.09	357.95	3799.40	24.10	-0.86	0.00	0.00	24.12	
3900.00	3.09	357.95	3899.25	29.49	-1.06	0.00	0.00	29.51	
4000.00	3.09	357.95	3999.11	34.89	-1.25	0.00	0.00	34.91	
4100.00	3.09	357.95	4098.96	40.28	-1.44	0.00	0.00	40.31	
4200.00	3.09	357.95	4198.82	45.67	-1.64	0.00	0.00	45.70	
4300.00	3.09	357.95	4298.67	51.07	-1.83	0.00	0.00	51.10	
4400.00	3.09	357.95	4398.52	56.46	-2.02	0.00	0.00	56.49	
4500.00	3.09	357.95	4498.38	61.85	-2.22	0.00	0.00	61.89	
4600.00	3.09	357.95	4598.23	67.24	-2.41	0.00	0.00	67.29	
4700.00	3.09	357.95	4698.09	72.64	-2.60	0.00	0.00	72.68	
4800.00	3.09	357.95	4797.94	78.03	-2.80	0.00	0.00	78.08	
4900.00	3.09	357.95	4897.80	83.42	-2.99	0.00	0.00	83.48	

Weatherford International Limited 5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Interpolated Po	ints (Relative to	centre, TVD re	lative to Drill Fl	oor)					
MD	Inc	Az (°)	TVD	N.Offset	E.Offset	DLS (0.4100 H.G. ft)	T.Face	VS	Comment
(US ft) 5000.00	(°) 3.09		(US ft) 4997.65	(US ft) 88.82	(US ft) -3.18	(°/100 US ft) 0.00	(°) 0.00	(US ft) 88.87	
		357.95							
5100.00 5200.00	3.09 3.09	357.95 357.95	5097.50	94.21 99.60	-3.37 -3.57	0.00 0.00	0.00 0.00	94.27 99.67	
			5197.36						
5300.00 5400.00	3.09 3.09	357.95 357.95	5297.21 5397.07	104.99 110.39	-3.76 -3.95	0.00 0.00	0.00 0.00	105.06	
								110.46	CDEEN DIVED
5430.98	3.09	357.95	5428.00	112.06	-4.01	0.00	0.00	112.13	GREEN RIVER (GRRV):
5500.00	3.09	357.95	5496.92	115.78	-4.15	0.00	0.00	115.85	
5600.00	3.09	357.95	5596.78	121.17	-4.34	0.00	0.00	121.25	
5700.00	3.09	357.95	5696.63	126.57	-4.53	0.00	0.00	126.65	
5800.00	3.09	357.95	5796.48	131.96	-4.73	0.00	0.00	132.04	
5900.00	3.09	357.95	5896.34	137.35	-4.92	0.00	0.00	137.44	
6000.00	3.09	357.95	5996.19	142.74	-5.11	0.00	0.00	142.84	
6100.00	3.09	357.95	6096.05	148.14	-5.31	0.00	0.00	148.23	
6200.00	3.09	357.95	6195.90	153.53	-5.50	0.00	0.00	153.63	
6300.00	3.09	357.95	6295.76	158.92	-5.69	0.00	0.00	159.03	
6400.00	3.09	357.95	6395.61	164.32	-5.89	0.00	0.00	164.42	
6500.00	3.09	357.95	6495.46	169.71	-6.08	0.00	0.00	169.82	
6600.00	3.09	357.95	6595.32	175.10	-6.27	0.00	0.00	175.21	
6700.00	3.09	357.95	6695.17	180.49	-6.47	0.00	0.00	180.61	
6800.00	3.09	357.95	6795.03	185.89	-6.66	0.00	0.00	186.01	
6807.98	3.09	357.95	6803.00	186.32	-6.67	0.00	0.00	186.44	GREEN RIVER (GRTN1):
6900.00	3.09	357.95	6894.88	191.28	-6.85	0.00	0.00	191.40	, ,
7000.00	3.09	357.95	6994.74	196.67	-7.05	0.00	0.00	196.80	
7100.00	3.09	357.95	7094.59	202.07	-7.24	0.00	0.00	202.20	
7200.00	3.09	357.95	7194.44	207.46	-7.43	0.00	0.00	207.59	
7300.00	3.09	357.95	7294.30	212.85	-7.62	0.00	0.00	212.99	
7400.00	3.09	357.95	7394.15	218.24	-7.82	0.00	0.00	218.38	
7438.90	3.09	357.95	7433.00	220.34	-7.89	0.00	0.00	220.48	MAHOGANY BENCH:
7500.00	3.09	357.95	7494.01	223.64	-8.01	0.00	0.00	223.78	
7600.00	3.09	357.95	7593.86	229.03	-8.20	0.00	0.00	229.18	
7700.00	3.09	357.95	7693.72	234.42	-8.40	0.00	0.00	234.57	

Weatherford International Limited 5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Interpolated Poi	nts (Relative to	centre, TVD re	lative to Drill Fl	oor)					
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
7800.00	3.09	357.95	7793.57	239.82	-8.59	0.00	0.00	239.97	
7900.00	3.09	357.95	7893.42	245.21	-8.78	0.00	0.00	245.37	
8000.00	3.09	357.95	7993.28	250.60	-8.98	0.00	0.00	250.76	
8100.00	3.09	357.95	8093.13	255.99	-9.17	0.00	0.00	256.16	
8200.00	3.09	357.95	8192.99	261.39	-9.36	0.00	0.00	261.56	
8300.00	3.09	357.95	8292.84	266.78	-9.56	0.00	0.00	266.95	
8400.00	3.09	357.95	8392.70	272.17	-9.75	0.00	0.00	272.35	
8500.00	3.09	357.95	8492.55	277.57	-9.94	0.00	0.00	277.74	
8600.00	3.09	357.95	8592.40	282.96	-10.14	0.00	0.00	283.14	
8600.60	3.09	357.95	8593.00	282.99	-10.14	0.00	0.00	283.17	LOWER GREEN RIVER :
8700.00	3.09	357.95	8692.26	288.35	-10.33	0.00	0.00	288.54	
8800.00	3.09	357.95	8792.11	293.75	-10.52	0.00	0.00	293.93	
8900.00	3.09	357.95	8891.97	299.14	-10.72	0.00	0.00	299.33	
9000.00	3.09	357.95	8991.82	304.53	-10.91	0.00	0.00	304.73	
9100.00	3.09	357.95	9091.68	309.92	-11.10	0.00	0.00	310.12	
9200.00	3.09	357.95	9191.53	315.32	-11.30	0.00	0.00	315.52	
9300.00	3.09	357.95	9291.38	320.71	-11.49	0.00	0.00	320.92	
9400.00	3.09	357.95	9391.24	326.10	-11.68	0.00	0.00	326.31	
9500.00	3.09	357.95	9491.09	331.50	-11.87	0.00	0.00	331.71	
9546.97	3.09	357.95	9538.00	334.03	-11.97	0.00	0.00	334.24	WASATCH:
9600.00	3.09	357.95	9590.95	336.89	-12.07	0.00	0.00	337.10	
9700.00	3.09	357.95	9690.80	342.28	-12.26	0.00	0.00	342.50	
9800.00	3.09	357.95	9790.66	347.67	-12.45	0.00	0.00	347.90	
9803.23	3.09	357.95	9793.88	347.85	-12.46	0.00	0.00	348.07	START -1.5° DROP
9900.00	1.64	357.95	9890.57	351.84	-12.60	1.50	180.00	352.07	
10000.00	0.14	357.95	9990.55	353.40	-12.66	1.50	180.00	353.63	7 in
10009.45	0.00	0.00	10000.01	353.41	-12.66	1.50	180.00	353.64	
10100.00	0.00	0.00	10090.55	353.41	-12.66	0.00	0.00	353.64	
10200.00	0.00	0.00	10190.55	353.41	-12.66	0.00	0.00	353.64	
10300.00	0.00	0.00	10290.55	353.41	-12.66	0.00	0.00	353.64	
10400.00	0.00	0.00	10390.55	353.41	-12.66	0.00	0.00	353.64	
10500.00	0.00	0.00	10490.55	353.41	-12.66	0.00	0.00	353.64	

Weatherford International Limited

5D 7.5.7: 30 April 2014, 16:41:40 UTC

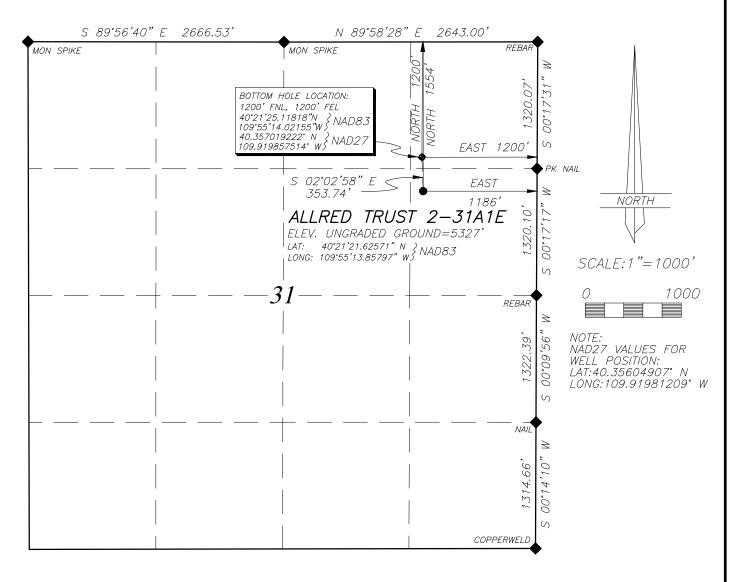
5D Plan Report

Interpolated Poi	nts (Relative to	e to centre, TVD relative to Drill Floor)		oor)					
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
10600.00	0.00	0.00	10590.55	353.41	-12.66	0.00	0.00	353.64	
10700.00	0.00	0.00	10690.55	353.41	-12.66	0.00	0.00	353.64	
10800.00	0.00	0.00	10790.55	353.41	-12.66	0.00	0.00	353.64	
10900.00	0.00	0.00	10890.55	353.41	-12.66	0.00	0.00	353.64	
11000.00	0.00	0.00	10990.55	353.41	-12.66	0.00	0.00	353.64	
11100.00	0.00	0.00	11090.55	353.41	-12.66	0.00	0.00	353.64	
11200.00	0.00	0.00	11190.55	353.41	-12.66	0.00	0.00	353.64	
11300.00	0.00	0.00	11290.55	353.41	-12.66	0.00	0.00	353.64	
11400.00	0.00	0.00	11390.55	353.41	-12.66	0.00	0.00	353.64	
11500.00	0.00	0.00	11490.55	353.41	-12.66	0.00	0.00	353.64	
11600.00	0.00	0.00	11590.55	353.41	-12.66	0.00	0.00	353.64	
11700.00	0.00	0.00	11690.55	353.41	-12.66	0.00	0.00	353.64	
11800.00	0.00	0.00	11790.55	353.41	-12.66	0.00	0.00	353.64	
11900.00	0.00	0.00	11890.55	353.41	-12.66	0.00	0.00	353.64	
12000.00	0.00	0.00	11990.55	353.41	-12.66	0.00	0.00	353.64	
12100.00	0.00	0.00	12090.55	353.41	-12.66	0.00	0.00	353.64	
12200.00	0.00	0.00	12190.55	353.41	-12.66	0.00	0.00	353.64	
12300.00	0.00	0.00	12290.55	353.41	-12.66	0.00	0.00	353.64	
12400.00	0.00	0.00	12390.55	353.41	-12.66	0.00	0.00	353.64	
12500.00	0.00	0.00	12490.55	353.41	-12.66	0.00	0.00	353.64	
12600.00	0.00	0.00	12590.55	353.41	-12.66	0.00	0.00	353.64	
12700.00	0.00	0.00	12690.55	353.41	-12.66	0.00	0.00	353.64	
12800.00	0.00	0.00	12790.55	353.41	-12.66	0.00	0.00	353.64	
12900.00	0.00	0.00	12890.55	353.41	-12.66	0.00	0.00	353.64	
13000.00	0.00	0.00	12990.55	353.41	-12.66	0.00	0.00	353.64	
13100.00	0.00	0.00	13090.55	353.41	-12.66	0.00	0.00	353.64	
13200.00	0.00	0.00	13190.55	353.41	-12.66	0.00	0.00	353.64	
13300.00	0.00	0.00	13290.55	353.41	-12.66	0.00	0.00	353.64	
13400.00	0.00	0.00	13390.55	353.41	-12.66	0.00	0.00	353.64	
13500.00	0.00	0.00	13490.55	353.41	-12.66	0.00	0.00	353.64	
13600.00	0.00	0.00	13590.55	353.41	-12.66	0.00	0.00	353.64	
13700.00	0.00	0.00	13690.55	353.41	-12.66	0.00	0.00	353.64	5 in

Weatherford International Limited 5D 7.5.7: 30 April 2014, 16:41:40 UTC

5D Plan Report

Interpolated Poi	nts (Relative to	centre, TVD r	elative to Drill Fl	oor)					
MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	Comment
13709.45	0.00	0.00	13700.00	353.41	-12.66	0.00	0.00	353.63	TD @ 13709.45' MD


Formation Points (Relative to centre, TVD relative to	Drill Floor)	
Name	MD (US ft)	TVD (US ft)
GREEN RIVER (GRRV)	5430.98	5428.00
GREEN RIVER (GRTN1)	6807.98	6803.00
MAHOGANY BENCH	7438.90	7433.00
LOWER GREEN RIVER	8600.60	8593.00
WASATCH	9546.97	9538.00

EP ENERGY E&P COMPANY, L.P.

WELL LOCATION

ALLRED TRUST 2-31A1E

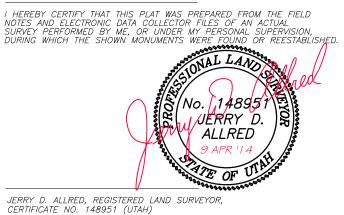
LOCATED IN THE SE¼ OF THE NE¼ OF SECTION 31, T1S, R1E, U.S.B.&M. UINTAH COUNTY, UTAH

LEGEND AND NOTES

CORNER MONUMENTS FOUND AND USED BY THIS SURVEY

> THE GENERAL LAND OFFICE (G.L.O.) PLAT WAS USED FOR REFERENCE AND CALCULATIONS AS WAS THE U.S.G.S. MAP

THIS SURVEY WAS PERFORMED USING GLOBAL POSITIONING SYSTEM PROCEDURES AND EQUIPMENT


THE BASIS OF BEARINGS IS GEODETIC NORTH DERIVED FROM G.P.S. OBSERVATIONS AT THE SECTION CORNER LOCATED AT LAT. 40°22'29.30061"N AND LONG. 109°54'58.86832"W USING THE UTAH STATE G.P.S. VIRTUAL REFERENCE STATION CONTROL NETWORK MAINTAINED AND OPERATED BY THE AUTOMATED GEOGRAPHIC REFERENCE CENTER

BASIS OF ELEVATIONS: NAVD 88 DATUM USING THE UTAH REFERENCE NETWORK CONTROL SYSTEM

> REV 9 APR 2014 REV 25 SEP 2013

10 AUG 2010 01-128-174

SURVEYOR'S CERTIFICATE

JERRY D. ALLRED & ASSOCIATES SURVEYING CONSULTANTS

1235 NORTH 700 EAST--P.O. BOX 975 DUCHESNE, UTAH 84021 (435) 738–5352

			DEPA	S 1 RTMEN	TATE (URCES	3				ENDED I	REPORT nanges)	FO	RM 8
			DIVIS	ION O	F OIL,	GAS	AND I	MININ	G			5. L	EASE DESI	GNATION AND SE	RIAL NUMB	ER:
WELI	L CON	MPLE	TION	OR I	RECC	MPL	ETIC	N RI	EPOR	T ANI	D LOG	6. II	FINDIAN, AI	LLOTTEE OR TRI	BE NAME	
1a. TYPE OF WELL	:	(OIL C		GAS C		DRY		OTHE	R		7. U	INIT or CA A	GREEMENT NAM	IE	
b. TYPE OF WORK	K: HORIZ. [LATS. [DEEP-		RE- ENTRY		DIFF. RESVR.		ОТНЕ	ER.		8. V	VELL NAME	and NUMBER:		
2. NAME OF OPERA	ATOR:											9. A	PI NUMBER	₹:		
3. ADDRESS OF OF	PERATOR:		CITY			STATE		ZIP		PHONE	NUMBER:	10 F	IELD AND F	POOL, OR WILDC	AT	
4. LOCATION OF W AT SURFACE:	ELL (FOOT	AGES)										11.	QTR/QTR, S MERIDIAN:	SECTION, TOWNS	SHIP, RANGE	,
AT TOP PRODUC	CING INTER	RVAL REPO	ORTED BE	ELOW:								12	COUNTY	Ι,	3. STATE	
AT TOTAL DEPT	H:				_							12.			l	JTAH
14. DATE SPUDDED	D:	15. DATE	T.D. REA	CHED:	16. DAT	E COMPL	ETED:	,	ABANDONE	D 🗌	READY TO PROD	UCE	17. ELEVA	ATIONS (DF, RKB	RT, GL):	
18. TOTAL DEPTH:	MD TVD			19. PLUG	BACK T.E	D.: MD TVD			20. IF N	IULTIPLE C	OMPLETIONS, HO	W MANY? *	21. DEPTI PLU	H BRIDGE MD G SET: TVE	1	
22. TYPE ELECTRIC	C AND OTH	ER MECHA	NICAL LO	OGS RUN (Submit cop	oy of each)			WAS DST	L CORED? RUN? NAL SURVEY?	NO NO NO	=	S (Subr	nit analysis) nit report) nit copy)	
24. CASING AND LI	INER RECO	RD (Repor	t all strinç	gs set in w	ell)					•						
HOLE SIZE	SIZE/G	RADE	WEIGH	T (#/ft.)	TOP ((MD)	вотто	M (MD)		EMENTER PTH	CEMENT TYPE 8 NO. OF SACKS	SLU VOLUM	RRY E (BBL)	CEMENT TOP **	AMOUNT	PULLED
25. TUBING RECOR	RD	<u>l</u>							<u> </u>							
SIZE	DEPTH	H SET (MD)	PACI	KER SET (MD)	SIZE		DEPTH	SET (MD)	PACKE	R SET (MD)	SIZE	DE	PTH SET (MD)	PACKER S	ET (MD)
26. PRODUCING IN	TERVALS		•		-					27. PERFO	RATION RECORD		-			
FORMATION	NAME	TO	P (MD)	ВОТТО	OM (MD)	TOP	(TVD)	вотто	M (TVD)	INTERVA	AL (Top/Bot - MD)	SIZE	NO. HOLE	+ -	RATION STA	rus
(A)														Open	Squeezed	
(B)												1		Open	Squeezed	╬
(C)														Open	Squeezed	 _
(D)					0		b			h .	info			Open	Squeezed	
28. ACID, FRACTUR		MENT, CEN	IENT SQL	JEEZE, ET	c. 5ee	at	Lacii	ea 1					011 011	. #∠/ &	#∠8.	
DEPTH I	INTERVAL								AMC	OUNT AND T	TYPE OF MATERIAL	-				
			+													
29. ENCLOSED ATT	TACHMENT	s: All	L 10	gs a	re s	ubmi	tted	d to	UDO	GM by	vendor	•		30. WEL	L STATUS:	
=	RICAL/MEC			O CEMENT	VERIFIC <i>i</i>	ATION	=	GEOLOGI CORE AN	IC REPORT	\equiv	DST REPORT	DIREC	TIONAL SU	RVEY		

(CONTINUED ON BACK)

31. INITIAL PRO	DDUCTION			IN	TERVAL A (As sho	wn in item #26)					
DATE FIRST PR	ODUCED:	TEST DATE:		HOURS TESTE	D:	TEST PRODUCTION RATES: →	OIL – BBL:	GAS – MCF:	WATER – E	BBL:	PROD. METHOD:
CHOKE SIZE:	TBG. PRESS.	CSG. PRESS	S. API GRAVITY	BTU – GAS	GAS/OIL RATIO	24 HR PRODUCTION RATES: →	N OIL – BBL:	GAS – MCF:	WATER – E	BBL:	INTERVAL STATUS:
	•	•	•	IN	TERVAL B (As sho	wn in item #26)	•	•			•
DATE FIRST PR	ODUCED:	TEST DATE:		HOURS TESTE	D:	TEST PRODUCTION RATES: →	OIL – BBL:	GAS – MCF:	WATER – E	BBL:	PROD. METHOD:
CHOKE SIZE:	TBG. PRESS.	CSG. PRESS	S. API GRAVITY	BTU – GAS	GAS/OIL RATIO	24 HR PRODUCTION RATES: →	N OIL – BBL:	GAS - MCF:	WATER – E	BBL:	INTERVAL STATUS:
				IN	TERVAL C (As sho	wn in item #26)					
DATE FIRST PR	ODUCED:	TEST DATE:		HOURS TESTE	D:	TEST PRODUCTION RATES: →	OIL – BBL:	GAS - MCF:	WATER – E	BBL:	PROD. METHOD:
CHOKE SIZE:	TBG. PRESS.	CSG. PRESS	S. API GRAVITY	BTU – GAS	GAS/OIL RATIO	24 HR PRODUCTION RATES: →	N OIL – BBL:	GAS – MCF:	WATER – E	BBL:	INTERVAL STATUS:
		_		IN	TERVAL D (As sho	wn in item #26)					
DATE FIRST PR	ODUCED:	TEST DATE:		HOURS TESTE	ED:	TEST PRODUCTION RATES: →	OIL – BBL:	GAS – MCF:	WATER – E	BBL:	PROD. METHOD:
CHOKE SIZE:	TBG. PRESS.	CSG. PRESS	S. API GRAVITY	BTU – GAS	GAS/OIL RATIO	24 HR PRODUCTION RATES: →	N OIL – BBL:	GAS – MCF:	WATER – E	BBL:	INTERVAL STATUS:
32. DISPOSITIO	ON OF GAS (Sold,	Used for Fuel	, Vented, Etc.)		-	•			•		
33. SUMMARY	OF POROUS ZON	IES (Include A	quifers):			3	34. FORMATION	(Log) MARKERS:			
			thereof: Cored interv shut-in pressures and		m tests, including de	epth interval					
Formatio	on	Top (MD)	Bottom (MD)	Descri	ptions, Contents, etc	o.		Name		(1	Top Measured Depth)
35 ADDITIONA	L REMARKS (Inc	lude plugging	nrocedure)								_
33. ADDITIONA	L KLIMAKKO (IIIC	idde plaggilig	procedure)								
36. I hereby cer	tify that the foreg	joing and attac	ched information is	complete and corr	rect as determined	from all available rec	cords.				
NAME (PLEAS	E PRINT)					TITLE					
SIGNATURE _						DATE					

This report must be submitted within 30 days of

- completing or plugging a new well
- drilling horizontal laterals from an existing well bore
- recompleting to a different producing formation
- reentering a previously plugged and abandoned well
- significantly deepening an existing well bore below the previous bottom-hole depth
- drilling hydrocarbon exploratory holes, such as core samples and stratigraphic tests

** ITEM 24: Cement Top - Show how reported top(s) of cement were determined (circulated (CIR), calculated (CAL), cement bond log (CBL), temperature survey (TS)).

Send to: Utah Division of Oil, Gas and Mining

1594 West North Temple, Suite 1210

Box 145801

Salt Lake City, Utah 84114-5801

Phone: 801-538-5340

Fax: 801-359-3940

(5/2000)

^{*} ITEM 20: Show the number of completions if production is measured separately from two or more formations.

Attachment to Well Completion Report

Form 8 Dated August 4, 2014

Well Name: Allred Trust 2-31A1E

Items #27 and #28 Continued

27. Perforation Record

Interval (Top/Bottom – MD)	Size	No. of Holes	Perf. Status
11763'-11980'	.43	66	Open
11497'-11728'	.43	66	Open

28. Acid, Fracture, Treatment, Cement Squeeze, Etc.

Depth Interval	Amount and Type of Material
12008'-12289'	5000 gal acid, 3000# 100 mesh, 160000# 20/40 PowerProp
11763'-11980'	5000 gal acid, 3000# 100 mesh, 170000# 20/40 PowerProp
11497'-11728'	5000 gal acid, 3000# 100 mesh, 163360# 20/40 PowerProp

Precision 406

Rig:

EP Energy Company: Job Number: Allred Trust 2-31A1E Well: Mag Decl.: Uintah, UT Location: Dir Driller:

MWD Eng:

Calculation Method Minimum Curvature 0.00 KB **Proposed Azimuth Depth Reference**

Tie Into: Gyro/MWD

Survey	Survey	Inclina-		Course	True Vertical	Vertical		Coord	dinates		Clos	_	Dogleg	Build	Walk
Number	Depth	tion	Azimuth	Length	Depth	Section	N/S		E/W			Direction		Rate	Rate
	(ft)	(deg)	(deg)	(ft)	(ft)	(ft)	(ft)		(ft)		(ft)	Azimuth	(d/100')	(d/100')	(d/100')
Tie In	0.00	0.00	0.00												
1	100.00	0.23	99.60	100.00	100.00	-0.03	0.03	S	0.20	Е	0.20	99.60	0.23	0.23	99.60
2	200.00	0.13	36.19	100.00	200.00	0.03	0.03	N	0.46	Е	0.46	86.73	0.21	-0.10	-63.41
3	300.00	0.33	57.30	100.00	300.00	0.27	0.27	N	0.77	Е	0.81	70.39	0.21	0.20	21.12
4	400.00	0.20	100.71	100.00	400.00	0.40	0.40	Ν	1.18	Е	1.24	71.43	0.23	-0.13	43.41
5	500.00	0.11	176.18	100.00	500.00	0.27	0.27	N	1.35	Е	1.38	78.78	0.20	-0.09	75.46
6	600.00	0.11	202.52	100.00	600.00	0.08	0.08	N	1.32	Е	1.32	86.46	0.05	0.01	26.34
7	700.00	0.11	244.50	100.00	700.00	-0.05	0.05	S	1.20	Е	1.20	92.40	0.08	-0.01	41.99
8	800.00	0.25	138.85	100.00	800.00	-0.25	0.25	S	1.26	Е	1.28	101.40	0.30	0.14	-105.66
9	900.00	0.40	149.99	100.00	899.99	-0.72	0.72	S	1.57	Е	1.73	114.49	0.16	0.15	11.15
10	1000.00	0.58	194.35	100.00	999.99	-1.51	1.51	S	1.62	Е	2.21	132.93	0.41	0.18	44.36
11	1100.00	0.57	171.07	100.00	1099.99	-2.49	2.49	S	1.57	Е	2.94	147.71	0.23	-0.02	-23.28
12	1200.00	0.46	162.32	100.00	1199.98	-3.36	3.36	S	1.77	Е	3.80	152.20	0.13	-0.10	-8.76
13	1300.00	0.34	218.26	100.00	1299.98	-3.97	3.97	S	1.71	Е	4.33	156.69	0.39	-0.13	55.95
14	1400.00	0.30	200.03	100.00	1399.98	-4.45	4.45	S	1.44	Е	4.68	162.05	0.11	-0.03	-18.23
15	1500.00	0.31	235.25	100.00	1499.98	-4.85	4.85	S	1.13	Е	4.98	166.87	0.18	0.01	35.22
16	1600.00	0.29	258.57	100.00	1599.98	-5.05	5.05	S	0.66	Е	5.09	172.55	0.12	-0.01	23.32
17	1700.00	0.17	182.49	100.00	1699.97	-5.25	5.25	S	0.40	Е	5.27	175.61	0.30	-0.12	-76.09
18	1800.00	0.64	205.93	100.00	1799.97	-5.90	5.90	S	0.15	Е	5.90	178.51	0.49	0.47	23.45
19	1900.00	0.71	238.68	100.00	1899.97	-6.72	6.72	S	0.62	W	6.75	185.28	0.39	0.08	32.75
20	2000.00	0.39	257.67	100.00	1999.96	-7.12	7.12	S	1.49	W	7.27	191.81	0.37	-0.32	18.99
21	2100.00	0.53	258.42	100.00	2099.96	-7.28	7.28	S	2.27	W	7.63	197.34	0.14	0.14	0.75
22	2200.00	0.54	255.08	100.00	2199.95	-7.50	7.50	S	3.18	W	8.15	203.00	0.03	0.01	-3.34
23	2300.00	0.55	266.28	100.00	2299.95	-7.65	7.65	S	4.12	W	8.69	208.27	0.11	0.00	11.19
24	2400.00	0.59	224.92	100.00	2399.94	-8.05	8.05	S	4.95	W	9.45	211.61	0.40	0.04	-41.35
25	2500.00	0.61	240.03	100.00	2499.94	-8.68	8.68	S	5.78	W	10.42	213.66	0.16	0.02	15.11
26	2600.00	0.37	222.92	100.00	2599.93	-9.18	9.18	S	6.46	W	11.23	215.13	0.28	-0.24	-17.11
27	2700.00	0.39	234.97	100.00	2699.93	-9.61	9.61	S	6.96	W	11.87	215.90	0.08	0.02	12.05
28	2800.00	0.41	163.16	100.00	2799.93	-10.15	10.15	S	7.13	W	12.40	215.11	0.47	0.02	-71.81
29	2900.00	0.15	270.24	100.00	2899.93	-10.48	10.48	S	7.16	W	12.70	214.34	0.47	-0.25	107.08
30	3000.00	0.46	185.31	100.00	2999.93	-10.88	10.88	S	7.33	W	13.12	213.97	0.47	0.31	-84.93
31	3100.00	0.38	137.75	100.00	3099.93	-11.52	11.52	S	7.15	W	13.56	211.81	0.34	-0.08	-47.56
32	3175.00	0.57	164.55	75.00	3174.92	-12.07	12.07	S	6.88	W	13.89	209.70	0.39	0.26	35.73
33	3213.00	0.51	184.85	38.00	3212.92	-12.42	12.42	S	6.85	W	14.18	208.86	0.53	-0.17	53.43
34	3310.00	0.84	354.61	97.00	3309.92	-12.14	12.14	S	6.95	W	13.99	209.78	1.39	0.34	175.01
35	3406.00	2.38	5.31	96.00	3405.88	-9.46	9.46	S	6.83	W	11.67	215.84	1.63	1.60	-363.85

EP ENERGY^A

EP Energy Company: Job Number: Calculation Method Minimum Curvature Allred Trust 2-31A1E 0.00 KB Well: Mag Decl.: **Proposed Azimuth** Uintah, UT Location: Dir Driller: **Depth Reference** MWD Eng: Rig: Precision 406 Tie Into: Gyro/MWD

Survey	Survey	Inclina-		Course	True Vertical	Vertical	(Coor	dinates		Clos	ure	Dogleg	Build	Walk
Number	Depth	tion	Azimuth	Length	Depth	Section	N/S		E/W		Distance	Direction		Rate	Rate
	(ft)	(deg)	(deg)	(ft)	(ft)	(ft)	(ft)		(ft)		(ft)	Azimuth		(d/100')	(d/100')
36	3502.00	3.96	1.49	96.00	3501.73	-4.16	4.16	S	6.56	W	7.77	237.64	1.66	1.65	-3.98
37	3598.00	3.73	2.68	96.00	3597.51	2.28	2.28	Ν	6.33	W	6.72	289.78	0.25	-0.24	1.24
38	3695.00	3.67	2.42	97.00	3694.31	8.53	8.53	Ν	6.05	W	10.46	324.65	0.06	-0.06	-0.27
39	3791.00	3.64	3.62	96.00	3790.12	14.64	14.64	Ν	5.73	W	15.72	338.64	0.09	-0.03	1.25
40	3887.00	3.46	3.91	96.00	3885.93	20.57	20.57	Ν	5.34	W	21.25	345.46	0.19	-0.19	0.30
41	3983.00	3.39	5.90	96.00	3981.76	26.29	26.29	Ν	4.85	W	26.73	349.55	0.14	-0.07	2.07
42	4079.00	4.01	352.85	96.00	4077.56	32.44	32.44	Ν	4.97	W	32.82	351.28	1.09	0.65	361.41
43	4175.00	4.19	354.10	96.00	4173.31	39.26	39.26	Ν	5.75	W	39.68	351.66	0.21	0.19	1.30
44	4271.00	3.70	355.06	96.00	4269.09	45.83	45.83	Ν	6.38	W	46.27	352.08	0.52	-0.51	1.00
45	4367.00	3.44	356.87	96.00	4364.90	51.79	51.79	Ν	6.80	W	52.24	352.52	0.30	-0.27	1.89
46	4463.00	2.88	353.77	96.00	4460.75	57.07	57.07	Ν	7.22	W	57.52	352.79	0.61	-0.58	-3.23
47	4559.00	4.20	344.94	96.00	4556.57	62.86	62.86	Ν	8.40	W	63.42	352.39	1.48	1.38	-9.20
48	4651.00	4.14	345.65	92.00	4648.33	69.33	69.33	Ν	10.10	W	70.06	351.71	0.09	-0.07	0.77
49	4751.00	4.10	345.84	100.00	4748.07	76.29	76.29	Ν	11.87	W	77.21	351.16	0.04	-0.04	0.19
50	4847.00	3.71	345.52	96.00	4843.84	82.63	82.63	Ν	13.48	W	83.72	350.73	0.41	-0.41	-0.33
51	4943.00	3.21	343.91	96.00	4939.67	88.22	88.22	Ν	15.00	W	89.49	350.35	0.53	-0.52	-1.68
52	5039.00	3.14	346.08	96.00	5035.52	93.35	93.35	Ν	16.38	W	94.78	350.05	0.14	-0.07	2.26
53	5136.00	4.87	3.37	97.00	5132.28	100.04	100.04	Ν	16.78	W	101.44	350.48	2.16	1.78	-353.31
54	5232.00	4.54	5.11	96.00	5227.96	107.90	107.90	Ν	16.20	W	109.10	351.46	0.37	-0.34	1.81
55	5328.00	4.07	8.29	96.00	5323.69	115.05	115.05	Ν	15.37	W	116.07	352.39	0.55	-0.49	3.31
56	5423.00	3.50	9.61	95.00	5418.48	121.25	121.25	Ν	14.40	W	122.10	353.23	0.61	-0.60	1.39
57	5519.00	4.33	357.84	96.00	5514.26	127.76	127.76	Ν	14.05	W	128.53	353.73	1.20	0.86	362.74
58	5616.00	3.97	357.73	97.00	5611.01	134.77	134.77	Ν	14.32	W	135.53	353.94	0.37	-0.37	-0.11
59	5711.00	3.50	0.02	95.00	5705.80	140.96	140.96	Ν	14.45	W	141.70	354.15	0.52	-0.49	-376.54
60	5808.00	2.97	359.86	97.00	5802.65	146.43	146.43	Ν	14.45	W	147.14	354.36	0.55	-0.55	370.97
61	5904.00	4.04	354.09	96.00	5898.47	152.28	152.28	Ν	14.81	W	153.00	354.45	1.17	1.11	-6.01
62	6000.00	3.08	356.13	96.00	5994.28	158.22	158.22	Ν	15.33	W	158.96	354.47	1.01	-1.00	2.13
63	6096.00	4.40	357.35	96.00	6090.07	164.47	164.47	Ν	15.67	W	165.22	354.56	1.38	1.38	1.27
64	6192.00	3.65	1.98	96.00	6185.84	171.20	171.20	Ν	15.74	W	171.93	354.75	0.85	-0.78	-370.18
65	6288.00	4.19	341.65	96.00	6281.62	177.59	177.59	Ν	16.74	W	178.37	354.62	1.54	0.56	353.82
66	6384.00	3.36	347.17	96.00	6377.41	183.66	183.66	Ν	18.47	W	184.58	354.26	0.94	-0.86	5.75
67	6480.00	2.72	351.87	96.00	6473.27	188.66	188.66	Ν	19.41	W	189.65	354.13	0.71	-0.67	4.90
68	6574.00	3.12	343.03	94.00	6567.15	193.31	193.31	Ν	20.47	W	194.39	353.95	0.64	0.43	-9.40
69	6671.00	4.33	355.03	97.00	6663.95	199.48	199.48	Ν	21.56	W	200.65	353.83	1.48	1.25	12.37
70	6766.00	2.66	326.21	95.00	6758.77	204.89	204.89	Ν	23.10	W	206.19	353.57	2.50	-1.76	-30.34
71	6862.00	3.77	335.47	96.00	6854.62	209.61	209.61	Ν	25.65	W	211.18	353.02	1.27	1.16	9.65
72	6958.00	4.14	342.62	96.00	6950.39	215.79	215.79	Ν	27.99	W	217.60	352.61	0.64	0.39	7.45

RECEIVED: Aug. 04, 2014

EP ENERGY*

EP Energy Company: Job Number: Calculation Method Minimum Curvature Allred Trust 2-31A1E 0.00 KB Well: Mag Decl.: **Proposed Azimuth** Uintah, UT Location: Dir Driller: **Depth Reference** MWD Eng: Rig: Precision 406 Tie Into: Gyro/MWD

Survey	Survey	Inclina-		Course	True Vertical	Vertical	С	Coordinates			Closure		Dogleg	Build	Walk
Number	Depth	tion	Azimuth	Length	Depth	Section	N/S	- [E/W		Distance	Direction		Rate	Rate
	(ft)	(deg)	(deg)	(ft)	(ft)	(ft)	(ft)		(ft)		(ft)	Azimuth	•	(d/100')	(d/100')
73	7055.00	3.37	338.62	97.00	7047.18	221.79	221.79	Ν	30.08	W	223.82	352.28	0.84	-0.79	-4.12
74	7151.00	4.12	346.03	96.00	7142.98	227.76	227.76	N	31.94	W	229.99	352.02	0.93	0.78	7.72
75	7247.00	3.44	350.65	96.00	7238.77	233.95	233.95	N	33.24	W	236.30	351.91	0.78	-0.71	4.81
76	7343.00	4.63	351.64	96.00	7334.53	240.63	240.63	N	34.27	W	243.05	351.89	1.24	1.24	1.03
77	7439.00	3.52	354.27	96.00	7430.29	247.39	247.39	N	35.13	W	249.87	351.92	1.17	-1.16	2.74
78	7535.00	4.97	351.17	96.00	7526.02	254.43	254.43	N	36.06	W	256.98	351.93	1.53	1.51	-3.23
79	7630.00	4.92	349.82	95.00	7620.67	262.51	262.51	N	37.41	W	265.16	351.89	0.13	-0.05	-1.42
80	7727.00	3.62	345.49	97.00	7717.40	269.57	269.57	N	38.92	W	272.36	351.79	1.38	-1.34	-4.46
81	7823.00	3.74	351.23	96.00	7813.20	275.60	275.60	N	40.15	W	278.51	351.71	0.40	0.13	5.98
82	7919.00	4.59	340.33	96.00	7908.94	282.31	282.31	N	41.92	W	285.41	351.55	1.21	0.89	-11.35
83	8015.00	3.86	340.40	96.00	8004.68	288.97	288.97	Ν	44.30	W	292.35	351.28	0.76	-0.76	0.07
84	8112.00	5.11	346.31	97.00	8101.38	296.24	296.24	N	46.42	W	299.86	351.09	1.37	1.29	6.09
85	8209.00	4.71	348.33	97.00	8198.03	304.34	304.34	N	48.25	W	308.14	350.99	0.45	-0.41	2.08
86	8305.00	3.43	345.07	96.00	8293.78	310.98	310.98	Ν	49.78	W	314.94	350.90	1.35	-1.33	-3.40
87	8401.00	2.85	347.75	96.00	8389.64	316.08	316.08	Ν	51.03	W	320.18	350.83	0.62	-0.60	2.79
88	8497.00	2.18	347.88	96.00	8485.55	320.20	320.20	N	51.92	W	324.38	350.79	0.70	-0.70	0.14
89	8594.00	1.72	350.75	97.00	8582.49	323.44	323.44	N	52.54	W	327.68	350.77	0.48	-0.47	2.96
90	8690.00	1.28	355.60	96.00	8678.46	325.93	325.93	N	52.85	W	330.19	350.79	0.48	-0.46	5.05
91	8786.00	0.83	345.09	96.00	8774.44	327.67	327.67	Ν	53.12	W	331.95	350.79	0.51	-0.47	-10.95
92	8882.00	0.79	351.00	96.00	8870.43	329.00	329.00	N	53.40	W	333.30	350.78	0.10	-0.04	6.16
93	8977.00	0.35	349.33	95.00	8965.43	329.93	329.93	Ν	53.55	W	334.25	350.78	0.46	-0.46	-1.76
94	9074.00	0.34	12.74	97.00	9062.42	330.50	330.50	Ν	53.55	W	334.81	350.80	0.14	-0.01	-347.00
95	9167.00	0.29	37.17	93.00	9155.42	330.96	330.96	N	53.34	W	335.23	350.84	0.15	-0.05	26.27
96	9264.00	0.39	93.11	97.00	9252.42	331.14	331.14	Ν	52.86	W	335.33	350.93	0.34	0.10	57.67
97	9360.00	0.39	125.40	96.00	9348.42	330.93	330.93	Ν	52.27	W	335.03	351.02	0.23	0.00	33.64
98	9456.00	0.40	132.34	96.00	9444.42	330.52		Ν	51.76	W	334.54	351.10	0.05	0.01	7.23
99	9552.00	0.64	147.50	96.00	9540.41	329.84	329.84	Ν	51.22	W	333.79	351.17	0.29	0.25	15.79
100	9648.00	0.58	152.10	96.00	9636.41	328.96	328.96	N	50.71	W	332.84	351.24	0.08	-0.06	4.79
101	9745.00	0.44	161.19	97.00	9733.40	328.17	328.17	Ν	50.36	W	332.01	351.28	0.17	-0.14	9.37
102	9841.00	0.38	142.43	96.00	9829.40	327.57	327.57	Ν	50.04	W	331.37	351.31	0.15	-0.06	-19.54
103	9906.00	0.30	145.07	65.00	9894.40	327.26		N	49.82	W	331.03	351.34	0.13	-0.12	4.06
104	10000.00	0.31	203.75	94.00	9988.40	326.82		N	49.78	W	330.59	351.34	0.32	0.01	62.43
105	10100.00	0.26	134.11	100.00	10088.40	326.42		Ν	49.72	W	330.18	351.34	0.33	-0.05	-69.64
106	10200.00	0.37	134.70	100.00	10188.40	326.03	326.03	N	49.33	W	329.74	351.40	0.11	0.11	0.59
107	10300.00	0.23	182.66	100.00	10288.40	325.61	325.61	N	49.12	W	329.29	351.42	0.27	-0.13	47.95
108	10400.00	0.53	202.62	100.00	10388.39	324.97		Ν	49.30	W	328.69	351.37	0.32	0.30	19.96
109	10500.00	0.38	215.23	100.00	10488.39	324.27	324.27	N	49.67	W	328.06	351.29	0.18	-0.15	12.61

RECEIVED: Aug. 04, 2014

EP ENERGY^A

EP Energy Calculation Method Minimum Curvature Company: Job Number: Allred Trust 2-31A1E 0.00 KB Well: Mag Decl.: **Proposed Azimuth** Uintah, UT Dir Driller: Location: **Depth Reference** MWD Eng: Gyro/MWD Rig: Precision 406 Tie Into:

Survey	Survey	Inclina-		Course	True Vertical	Vertical	Coordinates			Closure		Dogleg	Build	Walk	
Number	Depth	tion	Azimuth	Length	Depth	Section	N/S		E/W		Distance	Direction	Severity	Rate	Rate
	(ft)	(deg)	(deg)	(ft)	(ft)	(ft)	(ft)		(ft)		(ft)	Azimuth	(d/100')	(d/100')	(d/100')
110	10600.00	0.39	236.88	100.00	10588.39	323.82	323.82	N	50.15	W	327.68	351.20	0.15	0.01	21.65
111	10700.00	0.41	214.11	100.00	10688.39	323.33	323.33	Ν	50.64	W	327.27	351.10	0.16	0.02	-22.77
112	10800.00	0.40	218.45	100.00	10788.38	322.76	322.76	Ν	51.06	W	326.77	351.01	0.03	-0.01	4.34
113	10900.00	0.63	236.78	100.00	10888.38	322.18	322.18	Ν	51.74	W	326.31	350.88	0.28	0.23	18.32
114	11000.00	0.61	225.30	100.00	10988.37	321.50	321.50	N	52.58	W	325.78	350.71	0.13	-0.03	-11.48
115	11100.00	0.35	194.33	100.00	11088.37	320.84	320.84	Ν	53.03	W	325.19	350.61	0.35	-0.26	-30.96
116	11200.00	0.29	240.75	100.00	11188.37	320.42	320.42	Ν	53.32	W	324.82	350.55	0.26	-0.07	46.41
117	11300.00	0.15	128.44	100.00	11288.37	320.22	320.22	Ν	53.44	W	324.64	350.53	0.37	-0.14	-112.31
118	11400.00	0.12	99.20	100.00	11388.37	320.12	320.12	Ν	53.23	W	324.51	350.56	0.07	-0.03	-29.24
119	11500.00	0.27	98.88	100.00	11488.37	320.06	320.06	Ν	52.89	W	324.41	350.62	0.15	0.15	-0.32
120	11600.00	0.20	201.19	100.00	11588.37	319.87	319.87	Ν	52.72	W	324.18	350.64	0.37	-0.08	102.31
121	11700.00	0.65	177.97	100.00	11688.36	319.14	319.14	N	52.76	W	323.47	350.61	0.48	0.46	-23.22
122	11800.00	0.44	187.22	100.00	11788.36	318.19	318.19	N	52.79	W	322.54	350.58	0.23	-0.22	9.25
123	11900.00	0.37	153.49	100.00	11888.36	317.53	317.53	N	52.69	W	321.87	350.58	0.24	-0.06	-33.73
124	12000.00	0.66	153.78	100.00	11988.35	316.72	316.72	Ν	52.29	W	321.01	350.62	0.28	0.28	0.29
125	12100.00	1.19	156.26	100.00	12088.34	315.26	315.26	N	51.62	W	319.46	350.70	0.54	0.53	2.48
126	12200.00	1.48	153.29	100.00	12188.31	313.15	313.15	N	50.62	W	317.22	350.82	0.30	0.29	-2.97
127	12300.00	1.07	144.45	100.00	12288.29	311.24	311.24	N	49.50	W	315.15	350.96	0.45	-0.41	-8.84
128	12400.00	1.45	133.54	100.00	12388.26	309.61	309.61	Ν	48.04	W	313.31	351.18	0.45	0.38	-10.91
129	12500.00	1.47	139.87	100.00	12488.23	307.75	307.75	N	46.29	W	311.21	351.45	0.16	0.02	6.33
130	12600.00	1.56	142.71	100.00	12588.19	305.69	305.69	Ν	44.64	W	308.93	351.69	0.11	0.08	2.84
131	12700.00	1.60	142.27	100.00	12688.16	303.50	303.50	Ν	42.96	W	306.52	351.94	0.05	0.05	-0.44
132	12800.00	1.28	133.98	100.00	12788.12	301.62	301.62	Ν	41.30	W	304.43	352.20	0.39	-0.33	-8.29
133	12900.00	1.65	135.35	100.00	12888.09	299.82	299.82	Ν	39.49	W	302.41	352.50	0.37	0.37	1.37
134	13000.00	1.52	136.81	100.00	12988.05	297.83	297.83	Ν	37.57	W	300.19	352.81	0.13	-0.13	1.47
135	13100.00	1.92	157.04	100.00	13088.01	295.32	295.32	Ν	36.01	W	297.51	353.05	0.72	0.40	20.23
136	13200.00	2.01	154.39	100.00	13187.95	292.20	292.20	N	34.60	W	294.24	353.25	0.13	0.09	-2.65
137	13330.00	2.07	156.80	130.00	13317.87	287.98	287.98	Ν	32.69	W	289.83	353.52	0.08	0.05	1.85
138	13410.00	2.07	156.80	80.00	13397.82	285.32	285.32	N	31.55	W	287.06	353.69	0.00	0.00	0.00